File size: 1,655 Bytes
			
			| 2fb3491 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | ---
base_model: lerobot/smolvla_base
library_name: lerobot
license: apache-2.0
model_name: smolvla
pipeline_tag: robotics
tags:
- robotics
- smolvla
---
# Model Card for smolvla_box_in_bin_so101_test
<!-- Provide a quick summary of what the model is/does. -->
[SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python lerobot/scripts/train.py \
  --dataset.repo_id=<user_or_org>/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=<user_or_org>/<desired_policy_repo_id> \
  --wandb.enable=true
```
*Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
### Evaluate the policy
```bash
python -m lerobot.record \
  --robot.type=so100_follower \
  --dataset.repo_id=<user_or_org>/eval_<dataset> \
  --policy.path=<user_or_org>/<desired_policy_repo_id> \
  --episodes=10
```
Prefix the dataset repo with **eval_** and supply `--policy.path` pointing to a local or hub checkpoint.
--- |