Suparious's picture
Update README.md
4ba72bd verified
|
raw
history blame
3.62 kB
metadata
base_model: alpindale/Mistral-7B-v0.2-hf
library_name: transformers
language:
  - en
tags:
  - generated_from_trainer
  - quantized
  - 4-bit
  - AWQ
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
  - chatml
model-index:
  - name: workspace/dolphin-2.8-mistral-7b
    results: []
quantized_by: Suparious
pipeline_tag: text-generation
model_creator: cognitivecomputations
model_name: dolphin-2.8-mistral-7b-v02
model_type: mistral
inference: false
prompt_template: |
  <|im_start|>system
  {system_message}<|im_end|>
  <|im_start|>user
  {prompt}<|im_end|>
  <|im_start|>assistant

cognitivecomputations/dolphin-2.8-mistral-7b-v02 AWQ

Model Summary

This model is a fine-tuned version of alpindale/Mistral-7B-v0.2-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4828

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Hyperion-1.5-Mistral-7B-AWQ"
system_message = "You are Hyperion, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant