Fine-tune-all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("thanhpham1/Fine-tune-all-mpnet-base-v2")
sentences = [
'Option 2: Manually Create URL (slower to implement, but recommended for production environments)#\nThe second option is to manually create this URL by pattern-matching your specific use case with one of the following examples.\nThis is recommended because it provides finer-grained control over which repository branch and commit to use when generating your dependency zip file.\nThese options prevent consistency issues on Ray Clusters (see the warning above for more info).\nTo create the URL, pick a URL template below that fits your use case, and fill in all parameters in brackets (e.g. [username], [repository], etc.) with the specific values from your repository.\nFor instance, suppose your GitHub username is example_user, the repository’s name is example_repository, and the desired commit hash is abcdefg.\nIf example_repository is public and you want to retrieve the abcdefg commit (which matches the first example use case), the URL would be:',
'How do you create the URL for Option 2?',
'What can Ray Train and Ray Tune be used together for?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5874 |
cosine_accuracy@3 |
0.6818 |
cosine_accuracy@5 |
0.7955 |
cosine_accuracy@10 |
0.8864 |
cosine_precision@1 |
0.5874 |
cosine_precision@3 |
0.5181 |
cosine_precision@5 |
0.3944 |
cosine_precision@10 |
0.232 |
cosine_recall@1 |
0.264 |
cosine_recall@3 |
0.6074 |
cosine_recall@5 |
0.7522 |
cosine_recall@10 |
0.8781 |
cosine_ndcg@10 |
0.7387 |
cosine_mrr@10 |
0.6636 |
cosine_map@100 |
0.6989 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5734 |
cosine_accuracy@3 |
0.6661 |
cosine_accuracy@5 |
0.8007 |
cosine_accuracy@10 |
0.8811 |
cosine_precision@1 |
0.5734 |
cosine_precision@3 |
0.5052 |
cosine_precision@5 |
0.3937 |
cosine_precision@10 |
0.2309 |
cosine_recall@1 |
0.2601 |
cosine_recall@3 |
0.5915 |
cosine_recall@5 |
0.7544 |
cosine_recall@10 |
0.8727 |
cosine_ndcg@10 |
0.7303 |
cosine_mrr@10 |
0.6522 |
cosine_map@100 |
0.6894 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5664 |
cosine_accuracy@3 |
0.6661 |
cosine_accuracy@5 |
0.7797 |
cosine_accuracy@10 |
0.8584 |
cosine_precision@1 |
0.5664 |
cosine_precision@3 |
0.5012 |
cosine_precision@5 |
0.3864 |
cosine_precision@10 |
0.2253 |
cosine_recall@1 |
0.2577 |
cosine_recall@3 |
0.5893 |
cosine_recall@5 |
0.7354 |
cosine_recall@10 |
0.8488 |
cosine_ndcg@10 |
0.7168 |
cosine_mrr@10 |
0.6433 |
cosine_map@100 |
0.6824 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5402 |
cosine_accuracy@3 |
0.6399 |
cosine_accuracy@5 |
0.743 |
cosine_accuracy@10 |
0.8304 |
cosine_precision@1 |
0.5402 |
cosine_precision@3 |
0.4796 |
cosine_precision@5 |
0.3678 |
cosine_precision@10 |
0.2182 |
cosine_recall@1 |
0.2452 |
cosine_recall@3 |
0.5624 |
cosine_recall@5 |
0.701 |
cosine_recall@10 |
0.8228 |
cosine_ndcg@10 |
0.6886 |
cosine_mrr@10 |
0.6147 |
cosine_map@100 |
0.6544 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4353 |
cosine_accuracy@3 |
0.5332 |
cosine_accuracy@5 |
0.6311 |
cosine_accuracy@10 |
0.7622 |
cosine_precision@1 |
0.4353 |
cosine_precision@3 |
0.3945 |
cosine_precision@5 |
0.3094 |
cosine_precision@10 |
0.1983 |
cosine_recall@1 |
0.1984 |
cosine_recall@3 |
0.4655 |
cosine_recall@5 |
0.5911 |
cosine_recall@10 |
0.7468 |
cosine_ndcg@10 |
0.5953 |
cosine_mrr@10 |
0.5139 |
cosine_map@100 |
0.5592 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,146 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 8 tokens
- mean: 17.8 tokens
- max: 41 tokens
|
- min: 66 tokens
- mean: 225.02 tokens
- max: 384 tokens
|
- Samples:
anchor |
positive |
Does Ray Train work with vanilla TensorFlow in addition to TensorFlow with Keras? |
Get Started with Distributed Training using TensorFlow/Keras# Ray Train’s TensorFlow integration enables you to scale your TensorFlow and Keras training functions to many machines and GPUs. On a technical level, Ray Train schedules your training workers and configures TF_CONFIG for you, allowing you to run your MultiWorkerMirroredStrategy training script. See Distributed training with TensorFlow for more information. Most of the examples in this guide use TensorFlow with Keras, but Ray Train also works with vanilla TensorFlow.
Quickstart# import ray import tensorflow as tf
from ray import train from ray.train import ScalingConfig from ray.train.tensorflow import TensorflowTrainer from ray.train.tensorflow.keras import ReportCheckpointCallback
# If using GPUs, set this to True. use_gpu = False
a = 5 b = 10 size = 100 |
What type of failure can Ray automatically recover from? |
Ray can automatically recover from data loss but not owner failure.
Recovering from data loss# When an object value is lost from the object store, such as during node failures, Ray will use lineage reconstruction to recover the object. Ray will first automatically attempt to recover the value by looking for copies of the same object on other nodes. If none are found, then Ray will automatically recover the value by re-executing the task that previously created the value. Arguments to the task are recursively reconstructed through the same mechanism. Lineage reconstruction currently has the following limitations: |
From which directory should you run the zip command to ensure the proper zip file structure? |
Suppose instead you want to host your files in your /some_path/example_dir directory remotely and provide a remote URI. You would need to first compress the example_dir directory into a zip file. There should be no other files or directories at the top level of the zip file, other than example_dir. You can use the following command in the Terminal to do this: cd /some_path zip -r zip_file_name.zip example_dir
Note that this command must be run from the parent directory of the desired working_dir to ensure that the resulting zip file contains a single top-level directory. In general, the zip file’s name and the top-level directory’s name can be anything. The top-level directory’s contents will be used as the working_dir (or py_module). You can check that the zip file contains a single top-level directory by running the following command in the Terminal: zipinfo -1 zip_file_name.zip # example_dir/ # example_dir/my_file_1.txt # example_dir/subdir/my_file_2.txt |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.9938 |
10 |
44.0311 |
- |
- |
- |
- |
- |
1.0 |
11 |
- |
0.6797 |
0.6651 |
0.6439 |
0.6180 |
0.4996 |
0.9938 |
10 |
14.5908 |
- |
- |
- |
- |
- |
1.0 |
11 |
- |
0.7179 |
0.7034 |
0.6927 |
0.6658 |
0.5720 |
1.8944 |
20 |
8.5538 |
- |
- |
- |
- |
- |
2.0 |
22 |
- |
0.7295 |
0.7209 |
0.7109 |
0.6793 |
0.5942 |
2.7950 |
30 |
6.916 |
- |
- |
- |
- |
- |
3.0 |
33 |
- |
0.7382 |
0.7293 |
0.7149 |
0.6916 |
0.5939 |
3.6957 |
40 |
6.5704 |
- |
- |
- |
- |
- |
4.0 |
44 |
- |
0.7387 |
0.7303 |
0.7168 |
0.6886 |
0.5953 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}