theone049's picture
update README.md
11ba6a3 verified
|
raw
history blame
1.79 kB
---
library_name: transformers
tags:
- agriculture
- question-answering
- LoRA
- tinyllama
- fine-tuned
- causal-lm
license: apache-2.0
---
# 🌾 AgriQA-TinyLlama-LoRA (Adapter)
A **LoRA fine-tuned TinyLlama model** for answering agriculture-related questions in a conversational format. This adapter is fine-tuned on the [AgriQA dataset](https://huggingface.co/datasets/shchoi83/agriQA) using **parameter-efficient fine-tuning (PEFT)** and is suitable for low-resource inference scenarios.
## 🧠 Model Details
- **Base Model:** [TinyLlama/TinyLlama-1.1B-Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
- **LoRA Adapter Size:** ~2MB
- **Dataset:** [shchoi83/agriQA](https://huggingface.co/datasets/shchoi83/agriQA)
- **Task:** Question Answering (Instruction Tuning)
- **Language:** English
- **Adapter Only:** This repository only contains the **LoRA adapter**. You must load it on top of the base model.
- **Trained by:** [@theone049](https://huggingface.co/theone049)
## 🚀 Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "theone049/agriqa-tinyllama-lora-adapter")
# Inference
prompt = """### Instruction:
Answer the agricultural question.
### Input:
What is the control measure for aphid infestation in mustard crops?
### Response:
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))