|
|
--- |
|
|
library_name: transformers |
|
|
tags: |
|
|
- agriculture |
|
|
- question-answering |
|
|
- LoRA |
|
|
- tinyllama |
|
|
- fine-tuned |
|
|
- causal-lm |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
# 🌾 AgriQA-TinyLlama-LoRA (Adapter) |
|
|
|
|
|
A **LoRA fine-tuned TinyLlama model** for answering agriculture-related questions in a conversational format. This adapter is fine-tuned on the [AgriQA dataset](https://huggingface.co/datasets/shchoi83/agriQA) using **parameter-efficient fine-tuning (PEFT)** and is suitable for low-resource inference scenarios. |
|
|
|
|
|
## 🧠 Model Details |
|
|
|
|
|
- **Base Model:** [TinyLlama/TinyLlama-1.1B-Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat) |
|
|
- **LoRA Adapter Size:** ~2MB |
|
|
- **Dataset:** [shchoi83/agriQA](https://huggingface.co/datasets/shchoi83/agriQA) |
|
|
- **Task:** Question Answering (Instruction Tuning) |
|
|
- **Language:** English |
|
|
- **Adapter Only:** This repository only contains the **LoRA adapter**. You must load it on top of the base model. |
|
|
- **Trained by:** [@theone049](https://huggingface.co/theone049) |
|
|
|
|
|
## 🚀 Usage |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from peft import PeftModel, PeftConfig |
|
|
|
|
|
# Load base model and tokenizer |
|
|
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat") |
|
|
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat") |
|
|
|
|
|
# Load LoRA adapter |
|
|
model = PeftModel.from_pretrained(base_model, "theone049/agriqa-tinyllama-lora-adapter") |
|
|
|
|
|
# Inference |
|
|
prompt = """### Instruction: |
|
|
Answer the agricultural question. |
|
|
|
|
|
### Input: |
|
|
What is the control measure for aphid infestation in mustard crops? |
|
|
|
|
|
### Response: |
|
|
""" |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
|