|
# 🧠 AgriQA TinyLlama LoRA Adapter |
|
|
|
This repository contains a [LoRA](https://arxiv.org/abs/2106.09685) adapter fine-tuned on the [AgriQA](https://huggingface.co/datasets/shchoi83/agriQA) dataset using the [TinyLlama/TinyLlama-1.1B-Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat) base model. |
|
|
|
--- |
|
|
|
## 🔧 Model Details |
|
|
|
- **Base Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat) |
|
- **Adapter Type**: LoRA (Low-Rank Adaptation) |
|
- **Adapter Size**: ~4.5MB |
|
- **Dataset**: [`shchoi83/agriQA`](https://huggingface.co/datasets/shchoi83/agriQA) |
|
- **Language**: English |
|
- **Task**: Instruction-tuned Question Answering in Agriculture domain |
|
- **Trained by**: [@theone049](https://huggingface.co/theone049) |
|
|
|
--- |
|
|
|
## 📌 Usage |
|
|
|
To use this adapter, load it on top of the base model: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel, PeftConfig |
|
|
|
# Load base model |
|
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat") |
|
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat") |
|
|
|
# Load adapter |
|
model = PeftModel.from_pretrained(base_model, "theone049/agriqa-tinyllama-lora-adapter") |
|
|
|
# Run inference |
|
prompt = """### Instruction: |
|
Answer the agricultural question. |
|
|
|
### Input: |
|
What is the ideal pH range for growing rice? |
|
|
|
### Response:""" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|