Model card for cs3darknet_l.c2ns_in1k
A CS3-DarkNet (Cross-Stage-Partial w/ 3 convolutions) image classification model. Trained on ImageNet-1k in timm using recipe template described below.
Recipe details:
- Based on ResNet Strikes Back 
Crecipes w/o repeat-aug and stronger mixup - SGD (w/ Nesterov) optimizer and AGC (adaptive gradient clipping)
 - No stochastic depth used in this 
nsvariation of the recipe - Cosine LR schedule with warmup
 
Model Details
- Model Type: Image classification / feature backbone
 - Model Stats:
- Params (M): 21.2
 - GMACs: 4.9
 - Activations (M): 8.6
 - Image size: train = 256 x 256, test = 288 x 288
 
 - Papers:
- CSPNet: A New Backbone that can Enhance Learning Capability of CNN: https://arxiv.org/abs/1911.11929
 - YOLOv3: An Incremental Improvement: https://arxiv.org/abs/1804.02767
 - ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
 
 - Original: https://github.com/huggingface/pytorch-image-models
 
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('cs3darknet_l.c2ns_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'cs3darknet_l.c2ns_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 128, 128])
    #  torch.Size([1, 128, 64, 64])
    #  torch.Size([1, 256, 32, 32])
    #  torch.Size([1, 512, 16, 16])
    #  torch.Size([1, 1024, 8, 8])
    print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'cs3darknet_l.c2ns_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 8, 8) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{Wang2019CSPNetAN,
  title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN},
  author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
  year={2019},
  pages={1571-1580}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Redmon2018YOLOv3AI,
  title={YOLOv3: An Incremental Improvement},
  author={Joseph Redmon and Ali Farhadi},
  journal={ArXiv},
  year={2018},
  volume={abs/1804.02767}
}
@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
- Downloads last month
 - 116