modernbert_base_slop_classifier_v2
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2727
 - Accuracy: 0.8792
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.6666666666666675e-06
 - train_batch_size: 2
 - eval_batch_size: 1
 - seed: 42
 - gradient_accumulation_steps: 12
 - total_train_batch_size: 24
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_ratio: 0.15
 - num_epochs: 1
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 0.8987 | 0.3180 | 150 | 0.3689 | 0.8255 | 
| 6.6255 | 0.6360 | 300 | 0.3250 | 0.8591 | 
| 5.764 | 0.9541 | 450 | 0.2727 | 0.8792 | 
Framework versions
- Transformers 4.52.4
 - Pytorch 2.6.0+cu124
 - Datasets 3.6.0
 - Tokenizers 0.21.1
 
- Downloads last month
 - 1
 
Model tree for underscore2/modernbert_base_slop_classifier_v2
Base model
answerdotai/ModernBERT-base