| import transformers | |
| from transformers import TextStreamer | |
| import torch | |
| from transformers.generation.streamers import BaseStreamer | |
| from datasets import load_dataset | |
| import random | |
| class TokenStreamer(BaseStreamer): | |
| """ | |
| Simple token streamer that prints each token surrounded by brackets as soon as it's generated. | |
| Parameters: | |
| tokenizer (`AutoTokenizer`): | |
| The tokenizer used to decode the tokens. | |
| skip_prompt (`bool`, *optional*, defaults to `False`): | |
| Whether to skip the prompt tokens in the output. Useful for chatbots. | |
| """ | |
| def __init__(self, tokenizer, skip_prompt=True): | |
| self.tokenizer = tokenizer | |
| self.skip_prompt = skip_prompt | |
| self.next_tokens_are_prompt = True | |
| def put(self, value): | |
| if len(value.shape) > 1 and value.shape[0] > 1: | |
| raise ValueError("TokenStreamer only supports batch size 1") | |
| elif len(value.shape) > 1: | |
| value = value[0] | |
| if self.skip_prompt and self.next_tokens_are_prompt: | |
| self.next_tokens_are_prompt = False | |
| return | |
| for token_id in value.tolist(): | |
| token_text = self.tokenizer.decode([token_id]) | |
| print(f"={repr(token_text)}", end="\n", flush=True) | |
| def end(self): | |
| self.next_tokens_are_prompt = True | |
| print() | |
| model_id = "../" | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = transformers.AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| pipeline = transformers.pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| model_kwargs={"torch_dtype": torch.bfloat16}, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| dataset = load_dataset("EdinburghNLP/xsum", split="test") | |
| random.seed(0) | |
| sampled_indices = random.sample(range(len(dataset)), 100) | |
| sampled_dataset = dataset.select(sampled_indices) | |
| streamer = TokenStreamer(tokenizer) | |
| for sample in sampled_dataset: | |
| document = sample["document"] | |
| prompt = "Please copy this paragraph: <paragraph>" + document + "</paragraph> Directly output the copied paragraph here: " | |
| messages = [ | |
| {"role": "user", "content": prompt} | |
| ] | |
| print("===") | |
| outputs = pipeline( | |
| messages, | |
| max_new_tokens=64, | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=1.0, | |
| streamer=streamer, | |
| ) | |
| print("===") |