Improve model card: Add pipeline tag and library name
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,15 +1,17 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
datasets:
|
4 |
- yale-nlp/MDCure-72k
|
5 |
language:
|
6 |
- en
|
7 |
-
|
8 |
-
- google/flan-t5-base
|
9 |
tags:
|
10 |
- multi-document
|
11 |
- long-context
|
12 |
- Long Context
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# MDCure-FlanT5-Base
|
@@ -41,7 +43,9 @@ We recommend using the latest version of HF Transformers, or any `transformers>4
|
|
41 |
|
42 |
## Quickstart
|
43 |
|
44 |
-
Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using
|
|
|
|
|
45 |
|
46 |
```python
|
47 |
model = AutoModelForSeq2SeqLM.from_pretrained("yale-nlp/MDCure-FlanT5-Base", device_map='auto',torch_dtype="auto",)
|
@@ -50,7 +54,13 @@ tokenizer = AutoTokenizer.from_pretrained("yale-nlp/MDCure-FlanT5-Base")
|
|
50 |
source_text_1 = ...
|
51 |
source_text_2 = ...
|
52 |
source_text_3 = ...
|
53 |
-
input_text = f"{source_text_1}
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
|
56 |
outputs = model.generate(input_ids)
|
@@ -69,7 +79,7 @@ We open-source our custom multi-document instruction scoring model, MDCureRM, as
|
|
69 |
| **MDCure-Qwen2-1.5B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
|
70 |
| **MDCure-Qwen2-7B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
|
71 |
| **MDCure-LLAMA3.1-8B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
|
72 |
-
| **MDCure-LLAMA3.1-70B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-
|
73 |
|
74 |
## Citation
|
75 |
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- google/flan-t5-base
|
4 |
datasets:
|
5 |
- yale-nlp/MDCure-72k
|
6 |
language:
|
7 |
- en
|
8 |
+
license: apache-2.0
|
|
|
9 |
tags:
|
10 |
- multi-document
|
11 |
- long-context
|
12 |
- Long Context
|
13 |
+
pipeline_tag: summarization
|
14 |
+
library_name: transformers
|
15 |
---
|
16 |
|
17 |
# MDCure-FlanT5-Base
|
|
|
43 |
|
44 |
## Quickstart
|
45 |
|
46 |
+
Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `
|
47 |
+
|
48 |
+
` or `<doc-sep>` to maintain consistency with the format of the data used during training.
|
49 |
|
50 |
```python
|
51 |
model = AutoModelForSeq2SeqLM.from_pretrained("yale-nlp/MDCure-FlanT5-Base", device_map='auto',torch_dtype="auto",)
|
|
|
54 |
source_text_1 = ...
|
55 |
source_text_2 = ...
|
56 |
source_text_3 = ...
|
57 |
+
input_text = f"{source_text_1}
|
58 |
+
|
59 |
+
{source_text_2}
|
60 |
+
|
61 |
+
{source_text_3}
|
62 |
+
|
63 |
+
What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
|
64 |
|
65 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
|
66 |
outputs = model.generate(input_ids)
|
|
|
79 |
| **MDCure-Qwen2-1.5B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
|
80 |
| **MDCure-Qwen2-7B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
|
81 |
| **MDCure-LLAMA3.1-8B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
|
82 |
+
| **MDCure-LLAMA3.1-70B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72k |
|
83 |
|
84 |
## Citation
|
85 |
|