Improve model card: Add pipeline tag and library name

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +16 -6
README.md CHANGED
@@ -1,15 +1,17 @@
1
  ---
2
- license: apache-2.0
 
3
  datasets:
4
  - yale-nlp/MDCure-72k
5
  language:
6
  - en
7
- base_model:
8
- - google/flan-t5-base
9
  tags:
10
  - multi-document
11
  - long-context
12
  - Long Context
 
 
13
  ---
14
 
15
  # MDCure-FlanT5-Base
@@ -41,7 +43,9 @@ We recommend using the latest version of HF Transformers, or any `transformers>4
41
 
42
  ## Quickstart
43
 
44
- Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `\n\n` or `<doc-sep>` to maintain consistency with the format of the data used during training.
 
 
45
 
46
  ```python
47
  model = AutoModelForSeq2SeqLM.from_pretrained("yale-nlp/MDCure-FlanT5-Base", device_map='auto',torch_dtype="auto",)
@@ -50,7 +54,13 @@ tokenizer = AutoTokenizer.from_pretrained("yale-nlp/MDCure-FlanT5-Base")
50
  source_text_1 = ...
51
  source_text_2 = ...
52
  source_text_3 = ...
53
- input_text = f"{source_text_1}\n\n{source_text_2}\n\n{source_text_3}\n\nWhat happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
 
 
 
 
 
 
54
 
55
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
56
  outputs = model.generate(input_ids)
@@ -69,7 +79,7 @@ We open-source our custom multi-document instruction scoring model, MDCureRM, as
69
  | **MDCure-Qwen2-1.5B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
70
  | **MDCure-Qwen2-7B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
71
  | **MDCure-LLAMA3.1-8B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
72
- | **MDCure-LLAMA3.1-70B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72 |
73
 
74
  ## Citation
75
 
 
1
  ---
2
+ base_model:
3
+ - google/flan-t5-base
4
  datasets:
5
  - yale-nlp/MDCure-72k
6
  language:
7
  - en
8
+ license: apache-2.0
 
9
  tags:
10
  - multi-document
11
  - long-context
12
  - Long Context
13
+ pipeline_tag: summarization
14
+ library_name: transformers
15
  ---
16
 
17
  # MDCure-FlanT5-Base
 
43
 
44
  ## Quickstart
45
 
46
+ Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `
47
+
48
+ ` or `<doc-sep>` to maintain consistency with the format of the data used during training.
49
 
50
  ```python
51
  model = AutoModelForSeq2SeqLM.from_pretrained("yale-nlp/MDCure-FlanT5-Base", device_map='auto',torch_dtype="auto",)
 
54
  source_text_1 = ...
55
  source_text_2 = ...
56
  source_text_3 = ...
57
+ input_text = f"{source_text_1}
58
+
59
+ {source_text_2}
60
+
61
+ {source_text_3}
62
+
63
+ What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
64
 
65
  input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
66
  outputs = model.generate(input_ids)
 
79
  | **MDCure-Qwen2-1.5B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
80
  | **MDCure-Qwen2-7B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
81
  | **MDCure-LLAMA3.1-8B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
82
+ | **MDCure-LLAMA3.1-70B-Instruct** | [🤗 HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72k |
83
 
84
  ## Citation
85