khang119966's picture
Update README.md
d9e70e8 verified
|
raw
history blame
6.71 kB
metadata
library_name: transformers
tags: []

Model Details

Model Description

Dataset: GreenNode/GreenNode-Table-Markdown-Retrieval

Model Name MAP@5 ↑ MRR@5 ↑ NDCG@5 ↑ Recall@5 ↑ Mean ↑
Multilingual Embedding models
me5_small 33.75 33.75 35.68 41.49 36.17
me5_large 38.16 38.16 40.27 46.62 40.80
M3-Embedding 36.52 36.52 38.60 44.84 39.12
OpenAI-embedding-v3 30.61 30.61 32.57 38.46 33.06
Vietnamese Embedding models (Prior Work)
halong-embedding 32.15 32.15 34.13 40.09 34.63
sup-SimCSE-VietNamese-phobert_base 10.90 10.90 12.03 15.41 12.31
vietnamese-bi-encoder 13.61 13.61 14.63 17.68 14.89
GreenNode-Embedding
M3-GN-VN 41.85 41.85 44.15 57.05 46.23
M3-GN-VN-Mixed 42.08 42.08 44.33 51.06 44.89
Ours – Multi-vector embedding
Vintern-Embedding-1B 57.01 57.01 59.17 65.65 59.71

Dataset: GreenNode/zalo-ai-legal-text-retrieval-vn

Model Name MAP@5 ↑ MRR@5 ↑ NDCG@5 ↑ Recall@5 ↑ Mean ↑
Multilingual Embedding models
me5_small 54.68 54.37 58.32 69.16 59.13
me5_large 60.14 59.62 64.17 76.02 64.99
M3-Embedding 69.34 68.96 73.70 86.68 74.67
OpenAI-embedding-v3 38.68 38.80 41.53 49.94 41.74
Vietnamese Embedding models (Prior Work)
halong-embedding 52.57 52.28 56.64 68.72 57.55
sup-SimCSE-VietNamese-phobert_base 25.15 25.07 27.81 35.79 28.46
vietnamese-bi-encoder 54.88 54.47 59.10 79.51 61.99
GreenNode-Embedding
M3-GN-VN 65.03 64.80 69.19 81.66 70.17
M3-GN-VN-Mixed 69.75 69.28 74.01 86.74 74.95
Ours – Multi-vector embedding
Vintern-Embedding-1B 68.90 69.06 72.32 82.29 73.14

Dataset: ViDoRe Benchmark

image/png

Model Model_Size Average_Score ArxivQA DocVQA InfoVQA Artificial Intelligence Energy Government Healthcare Industry TAT-DQA
royokong/e5-v 8.3B 62.88 48.3 34.7 69.2 78.9 78.1 82.2 82.3 29.3
TIGER-Lab/VLM2Vec-Full 4.2B 51.16 42.8 26.7 66.7 53.5 63.5 64 70.7 21.4
nvidia/llama-nemoretriever-colembed-3b-v1 4.4B 90.42 88.4 66.2 94.9 99.6 96.6 97.8 99.3 80.6
nvidia/llama-nemoretriever-colembed-1b-v1 2.4B 89.8 87.6 64.5 93.6 100 96.6 96.7 99.6 79.8
jinaai/jina-embeddings-v4 3.8B 89.38 88.5 60.1 93.8 99.3 97.3 96.6 99.1 80.3
nomic-ai/colnomic-embed-multimodal-3b 3B 89.25 88.1 61.3 92.8 96.3 97.4 96.6 98.3 83.2
nomic-ai/colnomic-embed-multimodal-7b 7B 89.00 88.3 60.1 92.2 98.8 96.3 95.9 99.3 81.1
vidore/colqwen2.5-v0.2 3B 89.58 88.9 63.6 92.5 99.6 96.1 95.8 98 82.1
vidore/colqwen2-v1.0 2.2B 89.18 88 61.5 92.5 99 95.9 95.5 98.8 82.2
ibm-granite/granite-vision-3.3-2b-embedding 3B 85.98 84.2 54.6 89.7 98.9 96.3 97.3 98.9 67.9
vidore/colpali-v1.3 3B 85.44 83.3 58.4 85.5 97.4 94.6 96.1 97.4 70.8
vidore/colpali-v1.2 3B 83.16 77.8 56.6 82.2 97.5 93.8 94.4 94.9 68.1
ColVintern-1B 0.9B 78.8 71.6 48.3 84.6 92.9 88.7 89.4 95.2 59.6
Vintern-Embedding-1B 0.9B 82.85 75.37 51.79 86.2 97.52 93.19 93.97 97.09 67.72