DistilCodec-v1.0 / README.md
Ray0323's picture
Update README.md
2a370f4 verified
|
raw
history blame
4.99 kB
---
license: cc-by-nc-4.0
---
# DistilCodec
The Joint Laboratory of International Digital Economy Academy (IDEA) and Emdoor, in collaboration with Emdoor Information Technology Co., Ltd., has launched DistilCodec - A Single-Codebook Neural Audio Codec (NAC) with 32768 codes trained on uniersal audio.
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2408.16532)
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20DistilCodec-Models-blue)](https://huggingface.co/IDEA-Emdoor/DistilCodec-v1.0)
# 🔥 News
- *2025.05.25*: We release the code of DistilCodec-v1.0, including training and inference.
- *2025.05.23*: We release UniTTS and DistilCodec on [arxiv](https://arxiv.org/abs/2408.16532).
## Introduction of DistilCodec
The foundational network architecture of DistilCodec adopts an Encoder-VQ-Decoder framework
similar to that proposed in Soundstream. The encoder employs a ConvNeXt-V2 structure,
while the vector quantization module implements the GRFVQ scheme. The decoder
employs a ConvTranspose1d based architectural configuration similar to HiFiGAN. Detailed
network specifications and layer configurations are provided in Appendix A.1 The training methodol-
ogy of DistilCodec follows a similar approach to HiFiGAN, incorporating three types of
discriminators: Multi-Period Discriminator (MPD), Multi-Scale Discriminator (MSD), and Multi-
STFT Discriminator (MSFTFD). Here is the architecture of Distilcodec:
![The Architecture of DistilCodec](./data/distilcodec_architecture.jpg)
Distribution of DistilCodec training data is shown in below table:
| **Data Category** | **Data Size (in hours)** |
|-----------------------------|--------------------------|
| Chinese Audiobook | 38000 |
| Chinese Common Audio | 20000 |
| English Audio | 40000 |
| Music | 2000 |
| **Total** | **100000** |
## Inference of DistilCodec
The code is in [DistilCodec](https://github.com/IDEA-Emdoor-Lab/DistilCodec).
### Part1: Generating discrete codecs
```python
from distil_codec import DistilCodec, demo_for_generate_audio_codes
codec_model_config_path='path_to_model_config'
codec_ckpt_path = 'path_to_codec_ckpt_path'
step=204000
codec = DistilCodec.from_pretrained(
config_path=codec_model_config_path,
model_path=codec_ckpt_path,
load_steps=step,
use_generator=True,
is_debug=False).eval()
audio_path = 'path_to_audio'
audio_tokens = demo_for_generate_audio_codes(codec, audio_path, target_sr=24000)
print(audio_tokens)
```
### Part2: Reconstruct audio from raw wav
```python
from distil_codec import DistilCodec, demo_for_generate_audio_codes
codec_model_config_path='path_to_model_config'
codec_ckpt_path = 'path_to_codec_ckpt_path'
step=204000
codec = DistilCodec.from_pretrained(
config_path=codec_model_config_path,
model_path=codec_ckpt_path,
load_steps=step,
use_generator=True,
is_debug=False).eval()
audio_path = 'path_to_audio'
audio_tokens = demo_for_generate_audio_codes(codec, audio_path, target_sr=24000)
print(audio_tokens)
# Setup generated audio save path, the path is f'{gen_audio_save_path}/audio_name.wav'
gen_audio_save_path = 'path_to_save_path'
audio_name = 'your_audio_name'
y_gen = codec.decode_from_codes(audio_tokens, minus_token_offset=True)
codec.save_wav(
audio_gen_batch=y_gen,
nhop_lengths=[y_gen.shape[-1]],
save_path=gen_audio_save_path,
name_tag=audio_name
)
```
## Available DistilCodec models
🤗 links to the Huggingface model hub.
|Model Version| Huggingface | Corpus | Token/s | Domain | Open-Source |
|-----------------------|---------|---------------|---------------|-----------------------------------|---------------|
| DistilCodec-v1.0 | [🤗](https://huggingface.co/IDEA-Emdoor/DistilCodec-v1.0) | Universal Audio | 93 | Audiobook、Speech、Audio Effects | √ |
## References
The overall training pipeline of DistilCodec draws inspiration from AcademiCodec, while its encoder and decoder design is adapted from fish-speech. The Vector Quantization (VQ) component implements GRFVQ using the vector-quantize-pytorch framework. These three exceptional works have provided invaluable assistance in our implementation of DistilCodec. Below are links to these reference projects:
[1][vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch)
[2][AcademiCodec](https://github.com/moewiee/hificodec)
[3][fish-speech](https://github.com/fishaudio/fish-speech)
## Citation
If you find this code useful in your research, please cite our work:
```
@article{wang2025unitts,
title={UniTTS: An end-to-end TTS system without decoupling of acoustic and semantic information},
author={Rui Wang,Qianguo Sun,Tianrong Chen,Zhiyun Zeng,Junlong Wu,Jiaxing Zhang},
journal={arXiv preprint arXiv:2408.16532},
year={2025}
}
```