advanced-magnus-chess-model / USAGE_GUIDE.md
Levdalba's picture
Upload Advanced Magnus Chess Model v20250626 - 2.65M parameters trained on Magnus Carlsen games
6dc8c30 verified
# How to Use the Advanced Magnus Chess Model from Hugging Face
## Quick Start Guide
Once your model is uploaded to Hugging Face, here's how others can use it:
### 1. Installation
```bash
pip install huggingface_hub torch chess numpy pyyaml scikit-learn
```
### 2. Download and Use the Model
```python
from huggingface_hub import hf_hub_download
import chess
import sys
import os
# Download model files (replace YOUR_USERNAME with your actual username)
repo_id = "YOUR_USERNAME/advanced-magnus-chess-model"
# Download required files
model_path = hf_hub_download(repo_id=repo_id, filename="model.pth")
predictor_path = hf_hub_download(repo_id=repo_id, filename="advanced_magnus_predictor.py")
config_path = hf_hub_download(repo_id=repo_id, filename="config.yaml")
# Add the download directory to Python path
download_dir = os.path.dirname(model_path)
sys.path.append(download_dir)
# Import and use the predictor
from advanced_magnus_predictor import AdvancedMagnusPredictor
# Initialize the predictor
predictor = AdvancedMagnusPredictor()
# Analyze a chess position
board = chess.Board("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1")
predictions = predictor.predict_moves(board, top_k=5)
print("Magnus-style move predictions:")
for i, pred in enumerate(predictions, 1):
move = pred['move']
confidence = pred['confidence']
san = board.san(chess.Move.from_uci(move))
print(f"{i}. {san} ({move}) - {confidence:.3f} confidence")
```
### 3. Example Output
```
Magnus-style move predictions:
1. c5 (c7c5) - 0.145 confidence
2. e5 (e7e5) - 0.123 confidence
3. Nf6 (g8f6) - 0.098 confidence
4. d6 (d7d6) - 0.087 confidence
5. e6 (e7e6) - 0.075 confidence
```
## Advanced Usage
### Batch Analysis
```python
positions = [
"rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1",
"rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2",
"rnbqkbnr/ppp1pppp/8/3p4/2PP4/8/PP2PPPP/RNBQKBNR b KQkq c3 0 2"
]
for i, fen in enumerate(positions):
print(f"\nPosition {i+1}: {fen}")
board = chess.Board(fen)
predictions = predictor.predict_moves(board, top_k=3)
for pred in predictions:
san = board.san(chess.Move.from_uci(pred['move']))
print(f" {san}: {pred['confidence']:.3f}")
```
### Integration with Chess Engines
```python
import chess.engine
# Combine Magnus predictions with Stockfish analysis
stockfish = chess.engine.SimpleEngine.popen_uci("/path/to/stockfish")
board = chess.Board("your_position_fen")
# Get Magnus-style predictions
magnus_predictions = predictor.predict_moves(board, top_k=5)
# Get engine analysis
engine_result = stockfish.play(board, chess.engine.Limit(time=1.0))
engine_move = engine_result.move.uci()
print("Magnus predictions vs Engine:")
for pred in magnus_predictions:
move = pred['move']
san = board.san(chess.Move.from_uci(move))
marker = " ⭐" if move == engine_move else ""
print(f" {san}: {pred['confidence']:.3f}{marker}")
stockfish.quit()
```
## Model Features
- **Style Emulation**: Predicts moves in Magnus Carlsen's characteristic style
- **High Accuracy**: 6.65% exact match, 14.17% top-5 accuracy
- **Fast Inference**: ~50ms per position
- **Comprehensive**: Handles all chess positions and game phases
- **Educational**: Perfect for learning Magnus's strategic concepts
## Use Cases
1. **Chess Training**: Learn Magnus's move preferences
2. **Game Analysis**: Understand Magnus-style thinking
3. **AI Development**: Building chess applications
4. **Research**: Studying player-specific chess styles
5. **Educational Tools**: Teaching advanced chess concepts
## Technical Notes
- Model requires position feature extraction
- Works best with properly formatted FEN strings
- Optimized for modern hardware (GPU/MPS supported)
- Compatible with standard chess libraries
## Support
For issues or questions about using the model, please check the model repository on Hugging Face or create an issue in the original project repository.
## Citation
```bibtex
@misc{advanced_magnus_chess_model_2025,
title={Advanced Magnus Carlsen Chess Model},
author={Chess AI Research Team},
year={2025},
url={https://huggingface.co/YOUR_USERNAME/advanced-magnus-chess-model}
}
```