File size: 3,921 Bytes
cbe52c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: kpi-priority-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kpi-priority-model

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7414
- Accuracy: 0.7288
- F1: 0.7266
- Classification Report:               precision    recall  f1-score   support

         Low       0.68      0.83      0.75        94
      Medium       0.66      0.52      0.58       111
        High       0.69      0.73      0.71       202
    Critical       0.81      0.78      0.80       253

    accuracy                           0.73       660
   macro avg       0.71      0.72      0.71       660
weighted avg       0.73      0.73      0.73       660


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Classification Report                                                                                                                                                                                                                                                                                                                                                                                                                              |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 2.3852        | 1.0   | 165  | 0.8176          | 0.6833   | 0.6838 |               precision    recall  f1-score   support

         Low       0.65      0.85      0.74        94
      Medium       0.55      0.55      0.55       111
        High       0.62      0.78      0.69       202
    Critical       0.88      0.60      0.72       253

    accuracy                           0.68       660
   macro avg       0.68      0.70      0.67       660
weighted avg       0.71      0.68      0.68       660
 |
| 1.3946        | 2.0   | 330  | 0.7414          | 0.7288   | 0.7266 |               precision    recall  f1-score   support

         Low       0.68      0.83      0.75        94
      Medium       0.66      0.52      0.58       111
        High       0.69      0.73      0.71       202
    Critical       0.81      0.78      0.80       253

    accuracy                           0.73       660
   macro avg       0.71      0.72      0.71       660
weighted avg       0.73      0.73      0.73       660
 |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0