ShuaiYang03's picture
Update README.md
0052423 verified
metadata
datasets:
  - IPEC-COMMUNITY/libero_spatial_no_noops_1.0.0_lerobot
base_model:
  - nvidia/Eagle2-2B
tags:
  - vision-language-model
  - manipulation
  - robotics
pipeline_tag: robotics

Model Card for InstructVLA LIBERO-Spatial

  • checkpoints: the model in .pt format

  • eval: the evaluation results with 3 random seeds

  • dataset_statistics.json: the normalization statistics for the dataset

Evaluation:


#!/bin/bash

CKPT_LIST=(
  "path/to/checkpoints/step-018000-epoch-87-loss=0.0409.pt"
)

# Loop over the checkpoint list and GPUs
for i in "${!CKPT_LIST[@]}"; do
  GPU_ID=$((i % 8))  # Cycle through GPUs 0-7
  CHECKPOINT="${CKPT_LIST[$i]}"
  
  # Run the evaluation script for each checkpoint and GPU
  CUDA_VISIBLE_DEVICES=$GPU_ID python deploy/libero/run_libero_eval.py \
    --model_family instruct_vla \
    --pretrained_checkpoint "$CHECKPOINT" \
    --task_suite_name libero_spatial \
    --local_log_dir Libero/release_ensemble \
    --use_length -1 \
    --center_crop True &

  # --use_length == -1 : execute the ensembled action
  # --use_length >= 1  : execute action_chunk[0:use_length]
  # For this checkpoint, you should use action ensemble.
  
  sleep 5
done

# Wait for all background jobs to finish
wait