asmud's picture
Initial Release: Indonesian Embedding Small with PyTorch and ONNX variants...
4b80424
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:10554
  - loss:CosineSimilarityLoss
base_model: LazarusNLP/all-indo-e5-small-v4
widget:
  - source_sentence: Menggunakan sunscreen setiap hari
    sentences:
      - >-
        Seorang anak laki-laki yang tampak sakit disentuh wajahnya oleh seorang
        balita.
      - >-
        Warga Hispanik secara resmi telah menyalip warga Amerika keturunan
        Afrika sebagai kelompok minoritas terbesar di AS

        menurut laporan yang dirilis oleh Biro Sensus AS.
      - Tidak pernah menggunakan sunscreen
  - source_sentence: Sering membeli makanan siap saji melalui aplikasi
    sentences:
      - Provinsi ini memiliki angka kepadatan penduduk 38 jiwa/km².
      - Kadang membeli makanan siap saji melalui aplikasi
      - Seorang pria sedang melakukan trik kartu.
  - source_sentence: >-
      University of Michigan hari ini merilis kebijakan penerimaan mahasiswa
      baru setelah Mahkamah Agung AS membatalkan cara penerimaan mahasiswa baru
      yang sebelumnya.
    sentences:
      - >-
        "Mereka telah memblokir semua tanaman bio baru karena ketakutan yang
        tidak berdasar dan tidak ilmiah," kata Bush.
      - Jarang membeli kopi Kenangan
      - >-
        University of Michigan berencana untuk merilis kebijakan penerimaan
        mahasiswa baru pada hari Kamis setelah persyaratan penerimaannya ditolak
        oleh Mahkamah Agung AS pada bulan Juni.
  - source_sentence: >-
      pakar non-proliferasi di institut internasional untuk studi strategis mark
      fitzpatrick menyatakan bahwa laporan IAEA - memiliki tenor yang sangat
      kuat.
    sentences:
      - Pernah membeli kopi Starbucks
      - >-
        rekan senior di institut internasional untuk studi strategis mark
        fitzpatrick menyatakan bahwa - rencana badan energi atom internasional
        adalah dangkal.
      - Korea Utara mengusulkan pembicaraan tingkat tinggi dengan AS
  - source_sentence: Palestina dan Yordania koordinasikan sikap dalam perundingan damai
    sentences:
      - Petinggi Hamas bantah Gaza dan PA berkoordinasi dalam perundingan damai
      - Tidak pernah memesan makanan lewat aplikasi
      - Kereta api yang melaju di atas rel.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on LazarusNLP/all-indo-e5-small-v4
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts indo detailed
          type: sts-indo-detailed
        metrics:
          - type: pearson_cosine
            value: 0.8612625897174441
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8586969176298713
            name: Spearman Cosine

SentenceTransformer based on LazarusNLP/all-indo-e5-small-v4

This is a sentence-transformers model finetuned from LazarusNLP/all-indo-e5-small-v4. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: LazarusNLP/all-indo-e5-small-v4
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Palestina dan Yordania koordinasikan sikap dalam perundingan damai',
    'Petinggi Hamas bantah Gaza dan PA berkoordinasi dalam perundingan damai',
    'Kereta api yang melaju di atas rel.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.5014, -0.0652],
#         [ 0.5014,  1.0000, -0.0518],
#         [-0.0652, -0.0518,  1.0000]])

Evaluation

Metrics

Semantic Similarity

  • Dataset: sts-indo-detailed
  • Evaluated with main.DetailedEmbeddingSimilarityEvaluator
Metric Value
pearson_cosine 0.8613
spearman_cosine 0.8587

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,554 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 14.45 tokens
    • max: 50 tokens
    • min: 5 tokens
    • mean: 14.19 tokens
    • max: 50 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Tidak pernah mengisi saldo ShopeePay Tidak pernah mengisi saldo GoPay 0.0
    PM Turki mendesak untuk mengakhiri protes di Istanbul Polisi Turki menembakkan gas air mata ke arah pengunjuk rasa di Istanbul 0.56
    Dua ekor kucing sedang melihat ke arah jendela. Seekor kucing putih yang sedang melihat ke luar jendela. 0.5199999809265137
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 6
  • per_device_eval_batch_size: 6
  • num_train_epochs: 7
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 6
  • per_device_eval_batch_size: 6
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 7
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss sts-indo-detailed_spearman_cosine
0.0569 100 - 0.8225
0.1137 200 - 0.8261
0.1706 300 - 0.8263
0.2274 400 - 0.8259
0.2843 500 0.0764 0.8273
0.3411 600 - 0.8305
0.3980 700 - 0.8319
0.4548 800 - 0.8341
0.5117 900 - 0.8345
0.5685 1000 0.0445 0.8362
0.6254 1100 - 0.8384
0.6822 1200 - 0.8391
0.7391 1300 - 0.8464
0.7959 1400 - 0.8475
0.8528 1500 0.0372 0.8471
0.9096 1600 - 0.8477
0.9665 1700 - 0.8458
1.0 1759 - 0.8464
1.0233 1800 - 0.8443
1.0802 1900 - 0.8455
1.1370 2000 0.0316 0.8481
1.1939 2100 - 0.8447
1.2507 2200 - 0.8473
1.3076 2300 - 0.8474
1.3644 2400 - 0.8449
1.4213 2500 0.0281 0.8515
1.4781 2600 - 0.8498
1.5350 2700 - 0.8506
1.5918 2800 - 0.8546
1.6487 2900 - 0.8534
1.7055 3000 0.0271 0.8512
1.7624 3100 - 0.8493
1.8192 3200 - 0.8499
1.8761 3300 - 0.8523
1.9329 3400 - 0.8518
1.9898 3500 0.0258 0.8529
2.0 3518 - 0.8535
2.0466 3600 - 0.8546
2.1035 3700 - 0.8526
2.1603 3800 - 0.8548
2.2172 3900 - 0.8504
2.2740 4000 0.0222 0.8535
2.3309 4100 - 0.8533
2.3877 4200 - 0.8538
2.4446 4300 - 0.8518
2.5014 4400 - 0.8515
2.5583 4500 0.021 0.8515
2.6151 4600 - 0.8529
2.6720 4700 - 0.8548
2.7288 4800 - 0.8552
2.7857 4900 - 0.8542
2.8425 5000 0.0209 0.8571
2.8994 5100 - 0.8552
2.9562 5200 - 0.8553
3.0 5277 - 0.8552
3.0131 5300 - 0.8560
3.0699 5400 - 0.8531
3.1268 5500 0.0199 0.8491
3.1836 5600 - 0.8515
3.2405 5700 - 0.8520
3.2973 5800 - 0.8547
3.3542 5900 - 0.8558
3.4110 6000 0.0182 0.8560
3.4679 6100 - 0.8561
3.5247 6200 - 0.8562
3.5816 6300 - 0.8547
3.6384 6400 - 0.8547
3.6953 6500 0.0171 0.8561
3.7521 6600 - 0.8563
3.8090 6700 - 0.8555
3.8658 6800 - 0.8562
3.9227 6900 - 0.8587

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.0
  • PyTorch: 2.8.0
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}