|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dense |
|
- generated_from_trainer |
|
- dataset_size:10554 |
|
- loss:CosineSimilarityLoss |
|
base_model: LazarusNLP/all-indo-e5-small-v4 |
|
widget: |
|
- source_sentence: Menggunakan sunscreen setiap hari |
|
sentences: |
|
- Seorang anak laki-laki yang tampak sakit disentuh wajahnya oleh seorang balita. |
|
- 'Warga Hispanik secara resmi telah menyalip warga Amerika keturunan Afrika sebagai |
|
kelompok minoritas terbesar di AS |
|
|
|
menurut laporan yang dirilis oleh Biro Sensus AS.' |
|
- Tidak pernah menggunakan sunscreen |
|
- source_sentence: Sering membeli makanan siap saji melalui aplikasi |
|
sentences: |
|
- Provinsi ini memiliki angka kepadatan penduduk 38 jiwa/km². |
|
- Kadang membeli makanan siap saji melalui aplikasi |
|
- Seorang pria sedang melakukan trik kartu. |
|
- source_sentence: University of Michigan hari ini merilis kebijakan penerimaan mahasiswa |
|
baru setelah Mahkamah Agung AS membatalkan cara penerimaan mahasiswa baru yang |
|
sebelumnya. |
|
sentences: |
|
- '"Mereka telah memblokir semua tanaman bio baru karena ketakutan yang tidak berdasar |
|
dan tidak ilmiah," kata Bush.' |
|
- Jarang membeli kopi Kenangan |
|
- University of Michigan berencana untuk merilis kebijakan penerimaan mahasiswa |
|
baru pada hari Kamis setelah persyaratan penerimaannya ditolak oleh Mahkamah Agung |
|
AS pada bulan Juni. |
|
- source_sentence: pakar non-proliferasi di institut internasional untuk studi strategis |
|
mark fitzpatrick menyatakan bahwa laporan IAEA - memiliki tenor yang sangat kuat. |
|
sentences: |
|
- Pernah membeli kopi Starbucks |
|
- rekan senior di institut internasional untuk studi strategis mark fitzpatrick |
|
menyatakan bahwa - rencana badan energi atom internasional adalah dangkal. |
|
- Korea Utara mengusulkan pembicaraan tingkat tinggi dengan AS |
|
- source_sentence: Palestina dan Yordania koordinasikan sikap dalam perundingan damai |
|
sentences: |
|
- Petinggi Hamas bantah Gaza dan PA berkoordinasi dalam perundingan damai |
|
- Tidak pernah memesan makanan lewat aplikasi |
|
- Kereta api yang melaju di atas rel. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on LazarusNLP/all-indo-e5-small-v4 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts indo detailed |
|
type: sts-indo-detailed |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8612625897174441 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8586969176298713 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on LazarusNLP/all-indo-e5-small-v4 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [LazarusNLP/all-indo-e5-small-v4](https://huggingface.co/LazarusNLP/all-indo-e5-small-v4). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [LazarusNLP/all-indo-e5-small-v4](https://huggingface.co/LazarusNLP/all-indo-e5-small-v4) <!-- at revision 239ef03629c10bce80ea9e557255f249a542dece --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'BertModel'}) |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Palestina dan Yordania koordinasikan sikap dalam perundingan damai', |
|
'Petinggi Hamas bantah Gaza dan PA berkoordinasi dalam perundingan damai', |
|
'Kereta api yang melaju di atas rel.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[ 1.0000, 0.5014, -0.0652], |
|
# [ 0.5014, 1.0000, -0.0518], |
|
# [-0.0652, -0.0518, 1.0000]]) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-indo-detailed` |
|
* Evaluated with <code>__main__.DetailedEmbeddingSimilarityEvaluator</code> |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8613 | |
|
| **spearman_cosine** | **0.8587** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 10,554 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.45 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.19 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:-------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Tidak pernah mengisi saldo ShopeePay</code> | <code>Tidak pernah mengisi saldo GoPay</code> | <code>0.0</code> | |
|
| <code>PM Turki mendesak untuk mengakhiri protes di Istanbul</code> | <code>Polisi Turki menembakkan gas air mata ke arah pengunjuk rasa di Istanbul</code> | <code>0.56</code> | |
|
| <code>Dua ekor kucing sedang melihat ke arah jendela.</code> | <code>Seekor kucing putih yang sedang melihat ke luar jendela.</code> | <code>0.5199999809265137</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 6 |
|
- `per_device_eval_batch_size`: 6 |
|
- `num_train_epochs`: 7 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 6 |
|
- `per_device_eval_batch_size`: 6 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 7 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `parallelism_config`: None |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
- `router_mapping`: {} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-indo-detailed_spearman_cosine | |
|
|:------:|:----:|:-------------:|:---------------------------------:| |
|
| 0.0569 | 100 | - | 0.8225 | |
|
| 0.1137 | 200 | - | 0.8261 | |
|
| 0.1706 | 300 | - | 0.8263 | |
|
| 0.2274 | 400 | - | 0.8259 | |
|
| 0.2843 | 500 | 0.0764 | 0.8273 | |
|
| 0.3411 | 600 | - | 0.8305 | |
|
| 0.3980 | 700 | - | 0.8319 | |
|
| 0.4548 | 800 | - | 0.8341 | |
|
| 0.5117 | 900 | - | 0.8345 | |
|
| 0.5685 | 1000 | 0.0445 | 0.8362 | |
|
| 0.6254 | 1100 | - | 0.8384 | |
|
| 0.6822 | 1200 | - | 0.8391 | |
|
| 0.7391 | 1300 | - | 0.8464 | |
|
| 0.7959 | 1400 | - | 0.8475 | |
|
| 0.8528 | 1500 | 0.0372 | 0.8471 | |
|
| 0.9096 | 1600 | - | 0.8477 | |
|
| 0.9665 | 1700 | - | 0.8458 | |
|
| 1.0 | 1759 | - | 0.8464 | |
|
| 1.0233 | 1800 | - | 0.8443 | |
|
| 1.0802 | 1900 | - | 0.8455 | |
|
| 1.1370 | 2000 | 0.0316 | 0.8481 | |
|
| 1.1939 | 2100 | - | 0.8447 | |
|
| 1.2507 | 2200 | - | 0.8473 | |
|
| 1.3076 | 2300 | - | 0.8474 | |
|
| 1.3644 | 2400 | - | 0.8449 | |
|
| 1.4213 | 2500 | 0.0281 | 0.8515 | |
|
| 1.4781 | 2600 | - | 0.8498 | |
|
| 1.5350 | 2700 | - | 0.8506 | |
|
| 1.5918 | 2800 | - | 0.8546 | |
|
| 1.6487 | 2900 | - | 0.8534 | |
|
| 1.7055 | 3000 | 0.0271 | 0.8512 | |
|
| 1.7624 | 3100 | - | 0.8493 | |
|
| 1.8192 | 3200 | - | 0.8499 | |
|
| 1.8761 | 3300 | - | 0.8523 | |
|
| 1.9329 | 3400 | - | 0.8518 | |
|
| 1.9898 | 3500 | 0.0258 | 0.8529 | |
|
| 2.0 | 3518 | - | 0.8535 | |
|
| 2.0466 | 3600 | - | 0.8546 | |
|
| 2.1035 | 3700 | - | 0.8526 | |
|
| 2.1603 | 3800 | - | 0.8548 | |
|
| 2.2172 | 3900 | - | 0.8504 | |
|
| 2.2740 | 4000 | 0.0222 | 0.8535 | |
|
| 2.3309 | 4100 | - | 0.8533 | |
|
| 2.3877 | 4200 | - | 0.8538 | |
|
| 2.4446 | 4300 | - | 0.8518 | |
|
| 2.5014 | 4400 | - | 0.8515 | |
|
| 2.5583 | 4500 | 0.021 | 0.8515 | |
|
| 2.6151 | 4600 | - | 0.8529 | |
|
| 2.6720 | 4700 | - | 0.8548 | |
|
| 2.7288 | 4800 | - | 0.8552 | |
|
| 2.7857 | 4900 | - | 0.8542 | |
|
| 2.8425 | 5000 | 0.0209 | 0.8571 | |
|
| 2.8994 | 5100 | - | 0.8552 | |
|
| 2.9562 | 5200 | - | 0.8553 | |
|
| 3.0 | 5277 | - | 0.8552 | |
|
| 3.0131 | 5300 | - | 0.8560 | |
|
| 3.0699 | 5400 | - | 0.8531 | |
|
| 3.1268 | 5500 | 0.0199 | 0.8491 | |
|
| 3.1836 | 5600 | - | 0.8515 | |
|
| 3.2405 | 5700 | - | 0.8520 | |
|
| 3.2973 | 5800 | - | 0.8547 | |
|
| 3.3542 | 5900 | - | 0.8558 | |
|
| 3.4110 | 6000 | 0.0182 | 0.8560 | |
|
| 3.4679 | 6100 | - | 0.8561 | |
|
| 3.5247 | 6200 | - | 0.8562 | |
|
| 3.5816 | 6300 | - | 0.8547 | |
|
| 3.6384 | 6400 | - | 0.8547 | |
|
| 3.6953 | 6500 | 0.0171 | 0.8561 | |
|
| 3.7521 | 6600 | - | 0.8563 | |
|
| 3.8090 | 6700 | - | 0.8555 | |
|
| 3.8658 | 6800 | - | 0.8562 | |
|
| 3.9227 | 6900 | - | 0.8587 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.13 |
|
- Sentence Transformers: 5.1.0 |
|
- Transformers: 4.56.0 |
|
- PyTorch: 2.8.0 |
|
- Accelerate: 1.10.1 |
|
- Datasets: 4.0.0 |
|
- Tokenizers: 0.22.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |