|
--- |
|
language: |
|
- en |
|
tags: |
|
- ethereum |
|
- eth |
|
- cryptocurrency |
|
size_categories: |
|
- 10B<n<100B |
|
license: cc-by-4.0 |
|
--- |
|
# 🕸 Ethereum Address Behavior Dataset — GNN + LSTM (Fraud Detection) |
|
|
|
This dataset is designed for **fraud detection on Ethereum addresses** using a **dual-modality approach**: |
|
- **Graph Neural Networks (GNN):** transaction graph structure. |
|
- **Recurrent Models (LSTM/Transformers):** time-series of address features. |
|
|
|
The dataset is built from: |
|
- **Ethereum public BigQuery dataset** (`bigquery-public-data.crypto_ethereum.transactions`). |
|
- **Etherscan labels + custom scam labels**. |
|
- **Balanced address list** of ~115k addresses (scam vs non-scam, contracts vs EOAs). |
|
|
|
The dataset is also available on Kaggle: [Ethereum Fraud Dataset by Activity](https://www.kaggle.com/datasets/fesevu/ethereum-fraud-dataset-by-activity/data) |
|
|
|
## 📦 Dataset Collection Pipeline |
|
|
|
To reproduce or customize the dataset, use the instructions and code in the [eth-fraud-dataset-pipeline repository](https://github.com/fesevu/eth-fraud-dataset-pipeline). |
|
That repository provides: |
|
- Scripts for downloading raw data from public sources (BigQuery, Etherscan, curated scam lists). |
|
- Code for merging, deduplicating, and balancing address labels. |
|
- Tools for building the GNN and LSTM datasets (parquet files, mappings, targets). |
|
- Utilities for generating checksums and manifests for data integrity. |
|
|
|
**You must run the provided scripts to generate the dataset locally; the data files are not stored in the GitHub repository.** |
|
|
|
--- |
|
|
|
## 📂 Repository Structure |
|
|
|
final/ |
|
├─ gnn_dataset/ # GNN dataset (edges, meta, labels, mapping, targets) |
|
│ ├─ edges_all/edges.parquet |
|
│ ├─ edges_by_week/week=YYYY-Www/edges.parquet |
|
│ ├─ edges_by_month/month=YYYY-MM/edges.parquet |
|
│ ├─ meta/{week,month}_window_meta.parquet |
|
│ ├─ labels/targets_global.parquet |
|
│ ├─ mapping/address_id_map_labels.parquet |
|
│ ├─ targets/{week,month}_targets.parquet |
|
│ └─ README.md |
|
└─ lstm_dataset/ # LSTM dataset (daily → weekly → monthly aggregations) |
|
├─ daily_filtered.parquet |
|
├─ weekly.parquet |
|
├─ monthly.parquet |
|
└─ README.md |
|
|
|
- `gnn_dataset/` → GNN dataset (graph edges, slices, labels, mapping). |
|
- `lstm_dataset/` → LSTM dataset (tabular features, time-series). |
|
|
|
--- |
|
|
|
## 🔑 Synchronization Between GNN and LSTM |
|
|
|
- Both use the same **address universe** (`node_id` mapping). |
|
- Both use the same **time windows**: |
|
- ISO weeks (`YYYY-Www`) from `gnn_dataset/meta/week_window_meta.parquet`. |
|
- Months (`YYYY-MM`) from `gnn_dataset/meta/month_window_meta.parquet`. |
|
|
|
--- |
|
|
|
## 📂 Raw Data |
|
|
|
Alongside the processed datasets, we also provide the **raw parquet exports** (all parquet files are compressed with **Zstandard (zstd)**): |
|
|
|
final/ |
|
├─ GNN/parquet/ # raw transaction parquet chunks for GNN |
|
│ ├─ transactions_daily_part-00000.parquet |
|
│ ├─ transactions_daily_part-00001.parquet |
|
│ └─ ... |
|
├─ LSTM/parquet/ # raw daily features parquet for LSTM |
|
│ ├─ daily_final_part-00000.parquet |
|
│ ├─ daily_final_part-00001.parquet |
|
│ └─ ... |
|
├─ addr_labels_balanced.csv # balanced address list with labels |
|
├─ addr_labels_balanced.csv # balanced subset with labels (used in GNN + LSTM) |
|
|
|
--- |
|
|
|
### Contents |
|
- **`GNN/parquet/`** — raw transaction-level parquet files, containing: |
|
- `from_address`, `to_address` (STRING, lowercase hex) |
|
- `block_number` (INT64) |
|
- `timestamp` (TIMESTAMP, UTC) |
|
- `value_wei`, `tx_fee_wei` (NUMERIC in source, stored as string later) |
|
- `nonce`, `input_data_size`, `contract_creation`, `tx_hash`, `day` |
|
- **`LSTM/parquet/`** — raw daily activity parquet files (address-day features before filtering). |
|
- **`addr_labels_big.csv`** — initial large list of Ethereum addresses (>1M), with scam/contract metadata, **not used directly** (later downsampled & balanced). |
|
- **`addr_labels_balanced.csv`** — final balanced list of ~115k addresses (scam vs non-scam, contract vs EOA), used for both **GNN** and **LSTM** datasets. |
|
|
|
All parquet files in this dataset are compressed using **Zstandard (zstd)** for efficient storage and fast access. |
|
|
|
These files are the **starting point** for the preparation scripts: |
|
- `build_unified_dataset.py` → creates `gnn_dataset/` (GNN). |
|
- `build_lstm_dataset_lowmem.py` → creates `lstm_dataset/` (LSTM). |
|
|
|
--- |
|
|
|
## ⚖️ Labels |
|
|
|
- Source: Etherscan tags + curated scam lists. |
|
- Balanced across: |
|
- **Scam vs Non-Scam** |
|
- **Contract vs EOA** |
|
- Provided in: |
|
- `gnn_dataset/labels/targets_global.parquet` |
|
- `gnn_dataset/mapping/address_id_map_labels.parquet` |
|
|
|
--- |
|
|
|
### Address Label Files |
|
|
|
Both `addr_labels_big.csv` (full set) and `addr_labels_balanced.csv` (balanced subset) share the same schema: |
|
|
|
| Field | Type | Units | Description | |
|
|--------------------|----------|-------|-------------| |
|
| address | STRING | hex | Ethereum address (0x..., lowercase). | |
|
| is_scam | INT64 | 0/1 | Scam label: 1 = scam, 0 = non-scam. | |
|
| description | STRING | — | Free-text description (e.g. "Verified", "Phishing"). | |
|
| activity_start_ts | TIMESTAMP| UTC | First observed activity timestamp. | |
|
| activity_end_ts | TIMESTAMP| UTC | Last observed activity timestamp. | |
|
| is_contract | INT64 | 0/1 | Address type: 1 = smart contract, 0 = EOA. | |
|
|
|
- **`addr_labels_big.csv`** — ~1M+ raw addresses with scam/contract metadata, **not used directly** (later downsampled and balanced). |
|
- **`addr_labels_balanced.csv`** — final balanced subset (~115k addresses, scam vs non-scam, contract vs EOA), used in both **GNN** and **LSTM** datasets. |
|
|
|
--- |
|
|
|
## 📦 Use Cases |
|
|
|
- **Graph ML:** Train static embeddings (GraphSAGE, Node2Vec) or temporal GNNs. |
|
- **Sequence ML:** Train LSTM/Transformer on address time-series features. |
|
- **Fusion:** Combine GNN embeddings and LSTM features via `node_id`. |
|
- **Fraud detection:** Predict scam addresses, contracts vs EOAs. |
|
|
|
--- |
|
|
|
## 🛠 Collection Details |
|
|
|
- Source: Ethereum mainnet via BigQuery. |
|
- Labels: from Etherscan + custom curated lists. |
|
- Timezone: UTC. |
|
- ETH amounts stored as Decimal(38,9), exported as strings for precision. |
|
- Data preparation optimized for BigQuery + Polars, fits in 12–24 GB RAM. |
|
|
|
## 🗂 Source Datasets |
|
|
|
The address list and labels (scam/non-scam, description) were compiled from the following public datasets: |
|
|
|
- **Primary sources:** |
|
- [xblock.pro Dataset #13](https://xblock.pro/#/dataset/13) |
|
- [xblock.pro Dataset #25](https://xblock.pro/#/dataset/25) |
|
- [xblock.pro Dataset #50](https://xblock.pro/#/dataset/50) |
|
- [PTXPhish](https://github.com/blocksecteam/PTXPhish/tree/main?tab=readme-ov-file) |
|
- [Phishing Contract Sigmetrics](https://github.com/blocksecteam/phishing_contract_sigmetrics25/tree/main) |
|
- [Etherscan Open Source Contract Codes](https://etherscan.io/exportData?type=open-source-contract-codes) |
|
- [MyEtherWallet Ethereum Lists](https://github.com/MyEtherWallet/ethereum-lists) |
|
- [EtherScamDB](https://github.com/MrLuit/EtherScamDB/tree/master) |
|
- [CryptoScamDB Blacklist](https://github.com/CryptoScamDB/blacklist) |
|
- [ScamSniffer Scam Database](https://github.com/scamsniffer/scam-database) |
|
- [Forta Network Labelled Datasets](https://github.com/forta-network/labelled-datasets) |
|
- [Kaggle: Labelled Ethereum Addresses](https://www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses?select=eth_addresses.csv) |
|
- [Etherscan Labels](https://github.com/brianleect/etherscan-labels/tree/main/data/etherscan/combined) |
|
- [Kaggle: Ethereum Fraud Detection Dataset](https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset/data) |
|
- [Ethereum Fraud Datasets](https://github.com/surajsjain/ethereum-fraud-datasets/tree/main) |
|
- [Kaggle: Ponzi Scheme Contracts](https://www.kaggle.com/datasets/polarwolf/ponzi-scheme-contracts-on-ethereum) |
|
- [Ethereum Fraud Detection](https://github.com/eltontay/Ethereum-Fraud-Detection) |
|
|
|
- **Integration:** |
|
- Addresses and labels from these sources were merged and deduplicated. |
|
- The final balanced address list (~115k addresses) was constructed based on these datasets. |