|
# Rust-Analyzer Semantic Analysis Dataset - Deployment Summary |
|
|
|
## 🎉 Successfully Created HuggingFace Dataset! |
|
|
|
### Dataset Statistics |
|
- **Total Records**: 532,821 semantic analysis events |
|
- **Source Files**: 1,307 Rust files from rust-analyzer codebase |
|
- **Dataset Size**: 29MB (compressed Parquet format) |
|
- **Processing Phases**: 3 major compiler phases captured |
|
|
|
### Phase Breakdown |
|
1. **Parsing Phase**: 440,096 records (9 Parquet files, 24MB) |
|
- Syntax tree generation and tokenization |
|
- Parse error handling and recovery |
|
- Token-level analysis of every line of code |
|
|
|
2. **Name Resolution Phase**: 43,696 records (1 Parquet file, 2.2MB) |
|
- Symbol binding and scope analysis |
|
- Import resolution patterns |
|
- Function and struct definitions |
|
|
|
3. **Type Inference Phase**: 49,029 records (1 Parquet file, 2.0MB) |
|
- Type checking and inference decisions |
|
- Variable type assignments |
|
- Return type analysis |
|
|
|
### Technical Implementation |
|
- **Format**: Parquet files with Snappy compression |
|
- **Git LFS**: All files under 10MB for optimal Git LFS performance |
|
- **Schema**: Strongly typed with 20 columns per record |
|
- **Chunking**: Large files automatically split for size limits |
|
|
|
### Repository Structure |
|
``` |
|
rust-analyser-hf-dataset/ |
|
├── README.md # Comprehensive documentation |
|
├── .gitattributes # Git LFS configuration |
|
├── .gitignore # Standard ignore patterns |
|
├── parsing-phase/ |
|
│ ├── data-00000-of-00009.parquet # 3.1MB, 50,589 records |
|
│ ├── data-00001-of-00009.parquet # 3.0MB, 50,589 records |
|
│ ├── data-00002-of-00009.parquet # 2.6MB, 50,589 records |
|
│ ├── data-00003-of-00009.parquet # 2.4MB, 50,589 records |
|
│ ├── data-00004-of-00009.parquet # 3.1MB, 50,589 records |
|
│ ├── data-00005-of-00009.parquet # 2.2MB, 50,589 records |
|
│ ├── data-00006-of-00009.parquet # 2.6MB, 50,589 records |
|
│ ├── data-00007-of-00009.parquet # 3.4MB, 50,589 records |
|
│ └── data-00008-of-00009.parquet # 2.1MB, 35,384 records |
|
├── name_resolution-phase/ |
|
│ └── data.parquet # 2.2MB, 43,696 records |
|
└── type_inference-phase/ |
|
└── data.parquet # 2.0MB, 49,029 records |
|
``` |
|
|
|
### Data Schema |
|
Each record contains: |
|
- **Identification**: `id`, `file_path`, `line`, `column` |
|
- **Phase Info**: `phase`, `processing_order` |
|
- **Element Info**: `element_type`, `element_name`, `element_signature` |
|
- **Semantic Data**: `syntax_data`, `symbol_data`, `type_data`, `diagnostic_data` |
|
- **Metadata**: `processing_time_ms`, `timestamp`, `rust_version`, `analyzer_version` |
|
- **Context**: `source_snippet`, `context_before`, `context_after` |
|
|
|
### Deployment Readiness |
|
✅ **Git Repository**: Initialized with proper LFS configuration |
|
✅ **File Sizes**: All files under 10MB for Git LFS compatibility |
|
✅ **Documentation**: Comprehensive README with usage examples |
|
✅ **Metadata**: Proper HuggingFace dataset tags and structure |
|
✅ **License**: AGPL-3.0 consistent with rust-analyzer |
|
✅ **Quality**: All records validated and properly formatted |
|
|
|
### Next Steps for HuggingFace Hub Deployment |
|
1. **Create Repository**: `https://huggingface.co/datasets/introspector/rust-analyser` |
|
2. **Add Remote**: `git remote add origin https://huggingface.co/datasets/introspector/rust-analyser` |
|
3. **Push with LFS**: `git push origin main` |
|
4. **Verify Upload**: Check that all Parquet files are properly uploaded via LFS |
|
|
|
### Unique Value Proposition |
|
This dataset is **unprecedented** in the ML/AI space: |
|
- **Self-referential**: rust-analyzer analyzing its own codebase |
|
- **Multi-phase**: Captures 3 distinct compiler processing phases |
|
- **Comprehensive**: Every line of code analyzed with rich context |
|
- **Production-ready**: Generated by the most advanced Rust language server |
|
- **Research-grade**: Suitable for training code understanding models |
|
|
|
### Use Cases |
|
- **AI Model Training**: Code completion, type inference, bug detection |
|
- **Compiler Research**: Understanding semantic analysis patterns |
|
- **Educational Tools**: Teaching compiler internals and language servers |
|
- **Benchmarking**: Evaluating code analysis tools and techniques |
|
|
|
## 🚀 Ready for Deployment! |
|
|
|
The dataset is now ready to be pushed to the HuggingFace Hub at: |
|
**https://huggingface.co/datasets/introspector/rust-analyser** |
|
|
|
This represents a significant contribution to the open-source ML/AI community, providing unprecedented insight into how advanced language servers process code. |
|
|