Datasets:
metadata
annotations_creators:
- human-annotated
language:
- deu
- eng
- fra
- hin
- spa
- tha
license: unknown
multilinguality: multilingual
source_datasets:
- mteb/mtop_intent
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: de
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 748424
num_examples: 13424
- name: validation
num_bytes: 100446
num_examples: 1815
- name: test
num_bytes: 195937
num_examples: 3549
download_size: 543111
dataset_size: 1044807
- config_name: en
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 761023
num_examples: 15667
- name: validation
num_bytes: 108483
num_examples: 2235
- name: test
num_bytes: 214022
num_examples: 4386
download_size: 629031
dataset_size: 1083528
- config_name: es
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 621403
num_examples: 10934
- name: validation
num_bytes: 87850
num_examples: 1527
- name: test
num_bytes: 170223
num_examples: 2998
download_size: 403224
dataset_size: 879476
- config_name: fr
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 671550
num_examples: 11814
- name: validation
num_bytes: 88815
num_examples: 1577
- name: test
num_bytes: 182408
num_examples: 3193
download_size: 484784
dataset_size: 942773
- config_name: hi
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1238687
num_examples: 11330
- name: validation
num_bytes: 228095
num_examples: 2012
- name: test
num_bytes: 303899
num_examples: 2789
download_size: 642592
dataset_size: 1770681
- config_name: th
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1175051
num_examples: 10759
- name: validation
num_bytes: 185878
num_examples: 1671
- name: test
num_bytes: 301794
num_examples: 2765
download_size: 621662
dataset_size: 1662723
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: validation
path: de/validation-*
- split: test
path: de/test-*
- config_name: en
data_files:
- split: train
path: en/train-*
- split: validation
path: en/validation-*
- split: test
path: en/test-*
- config_name: es
data_files:
- split: train
path: es/train-*
- split: validation
path: es/validation-*
- split: test
path: es/test-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- split: validation
path: fr/validation-*
- split: test
path: fr/test-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: validation
path: hi/validation-*
- split: test
path: hi/test-*
- config_name: th
data_files:
- split: train
path: th/train-*
- split: validation
path: th/validation-*
- split: test
path: th/test-*
tags:
- mteb
- text
MTOP: Multilingual Task-Oriented Semantic Parsing
Task category | t2c |
Domains | Spoken, Spoken |
Reference | https://arxiv.org/pdf/2008.09335.pdf |
Source datasets:
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("MTOPIntentClassification")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{li-etal-2021-mtop,
abstract = {Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Available datasets suffer from several shortcomings: a) they contain few languages b) they contain small amounts of labeled examples per language c) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3 points on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.},
address = {Online},
author = {Li, Haoran and
Arora, Abhinav and
Chen, Shuohui and
Gupta, Anchit and
Gupta, Sonal and
Mehdad, Yashar},
booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
doi = {10.18653/v1/2021.eacl-main.257},
editor = {Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut},
month = apr,
pages = {2950--2962},
publisher = {Association for Computational Linguistics},
title = {{MTOP}: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark},
url = {https://aclanthology.org/2021.eacl-main.257},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("MTOPIntentClassification")
desc_stats = task.metadata.descriptive_stats
{}
This dataset card was automatically generated using MTEB