Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
NTREXBitextMining / README.md
Samoed's picture
Add dataset card
66b8b27 verified
metadata
annotations_creators:
  - expert-annotated
language:
  - afr
  - amh
  - arb
  - aze
  - bak
  - bel
  - bem
  - ben
  - bod
  - bos
  - bul
  - cat
  - ces
  - ckb
  - cym
  - dan
  - deu
  - div
  - dzo
  - ell
  - eng
  - eus
  - ewe
  - fao
  - fas
  - fij
  - fil
  - fin
  - fra
  - fuc
  - gle
  - glg
  - guj
  - hau
  - heb
  - hin
  - hmn
  - hrv
  - hun
  - hye
  - ibo
  - ind
  - isl
  - ita
  - jpn
  - kan
  - kat
  - kaz
  - khm
  - kin
  - kir
  - kmr
  - kor
  - lao
  - lav
  - lit
  - ltz
  - mal
  - mar
  - mey
  - mkd
  - mlg
  - mlt
  - mon
  - mri
  - msa
  - mya
  - nde
  - nep
  - nld
  - nno
  - nob
  - nso
  - nya
  - orm
  - pan
  - pol
  - por
  - prs
  - pus
  - ron
  - rus
  - shi
  - sin
  - slk
  - slv
  - smo
  - sna
  - snd
  - som
  - spa
  - sqi
  - srp
  - ssw
  - swa
  - swe
  - tah
  - tam
  - tat
  - tel
  - tgk
  - tha
  - tir
  - ton
  - tsn
  - tuk
  - tur
  - uig
  - ukr
  - urd
  - uzb
  - ven
  - vie
  - wol
  - xho
  - yor
  - yue
  - zho
  - zul
license: cc-by-sa-4.0
multilinguality: translated
source_datasets:
  - mteb/NTREX
task_categories:
  - translation
task_ids: []
dataset_info:
  features:
    - name: afr_Latn
      dtype: string
    - name: dan_Latn
      dtype: string
    - name: deu_Latn
      dtype: string
    - name: eng_Latn
      dtype: string
    - name: fao_Latn
      dtype: string
    - name: isl_Latn
      dtype: string
    - name: ltz_Latn
      dtype: string
    - name: nld_Latn
      dtype: string
    - name: nno_Latn
      dtype: string
    - name: nob_Latn
      dtype: string
    - name: swe_Latn
      dtype: string
    - name: amh_Ethi
      dtype: string
    - name: hau_Latn
      dtype: string
    - name: ibo_Latn
      dtype: string
    - name: nso_Latn
      dtype: string
    - name: orm_Ethi
      dtype: string
    - name: som_Latn
      dtype: string
    - name: ssw_Latn
      dtype: string
    - name: swa_Latn
      dtype: string
    - name: tir_Ethi
      dtype: string
    - name: tsn_Latn
      dtype: string
    - name: wol_Latn
      dtype: string
    - name: xho_Latn
      dtype: string
    - name: yor_Latn
      dtype: string
    - name: zul_Latn
      dtype: string
    - name: arb_Arab
      dtype: string
    - name: ben_Beng
      dtype: string
    - name: ckb_Arab
      dtype: string
    - name: ell_Grek
      dtype: string
    - name: fas_Arab
      dtype: string
    - name: fin_Latn
      dtype: string
    - name: fra_Latn
      dtype: string
    - name: heb_Hebr
      dtype: string
    - name: hin_Deva
      dtype: string
    - name: hun_Latn
      dtype: string
    - name: ind_Latn
      dtype: string
    - name: jpn_Jpan
      dtype: string
    - name: kmr_Latn
      dtype: string
    - name: kor_Hang
      dtype: string
    - name: lit_Latn
      dtype: string
    - name: mey_Arab
      dtype: string
    - name: pol_Latn
      dtype: string
    - name: por_Latn
      dtype: string
    - name: prs_Arab
      dtype: string
    - name: pus_Arab
      dtype: string
    - name: rus_Cyrl
      dtype: string
    - name: shi_Arab
      dtype: string
    - name: spa_Latn
      dtype: string
    - name: tam_Taml
      dtype: string
    - name: tgk_Cyrl
      dtype: string
    - name: tur_Latn
      dtype: string
    - name: vie_Latn
      dtype: string
    - name: zho_Hant
      dtype: string
    - name: aze_Latn
      dtype: string
    - name: bak_Cyrl
      dtype: string
    - name: kaz_Cyrl
      dtype: string
    - name: kir_Cyrl
      dtype: string
    - name: tat_Cyrl
      dtype: string
    - name: tuk_Latn
      dtype: string
    - name: uig_Arab
      dtype: string
    - name: uzb_Latn
      dtype: string
    - name: bel_Cyrl
      dtype: string
    - name: bos_Latn
      dtype: string
    - name: bul_Cyrl
      dtype: string
    - name: ces_Latn
      dtype: string
    - name: hrv_Latn
      dtype: string
    - name: mkd_Cyrl
      dtype: string
    - name: slk_Latn
      dtype: string
    - name: slv_Latn
      dtype: string
    - name: srp_Cyrl
      dtype: string
    - name: srp_Latn
      dtype: string
    - name: ukr_Cyrl
      dtype: string
    - name: bem_Latn
      dtype: string
    - name: ewe_Latn
      dtype: string
    - name: fuc_Latn
      dtype: string
    - name: kin_Latn
      dtype: string
    - name: nde_Latn
      dtype: string
    - name: nya_Latn
      dtype: string
    - name: sna_Latn
      dtype: string
    - name: ven_Latn
      dtype: string
    - name: div_Thaa
      dtype: string
    - name: eus_Latn
      dtype: string
    - name: guj_Gujr
      dtype: string
    - name: kan_Knda
      dtype: string
    - name: mar_Deva
      dtype: string
    - name: nep_Deva
      dtype: string
    - name: pan_Guru
      dtype: string
    - name: sin_Sinh
      dtype: string
    - name: snd_Arab
      dtype: string
    - name: tel_Telu
      dtype: string
    - name: urd_Arab
      dtype: string
    - name: bod_Tibt
      dtype: string
    - name: dzo_Tibt
      dtype: string
    - name: khm_Khmr
      dtype: string
    - name: lao_Laoo
      dtype: string
    - name: mon_Mong
      dtype: string
    - name: mya_Mymr
      dtype: string
    - name: tha_Thai
      dtype: string
    - name: cat_Latn
      dtype: string
    - name: glg_Latn
      dtype: string
    - name: ita_Latn
      dtype: string
    - name: mlt_Latn
      dtype: string
    - name: ron_Latn
      dtype: string
    - name: cym_Latn
      dtype: string
    - name: gle_Latn
      dtype: string
    - name: hye_Armn
      dtype: string
    - name: kat_Geor
      dtype: string
    - name: sqi_Latn
      dtype: string
    - name: fij_Latn
      dtype: string
    - name: fil_Latn
      dtype: string
    - name: hmn_Latn
      dtype: string
    - name: lav_Latn
      dtype: string
    - name: mal_Mlym
      dtype: string
    - name: mlg_Latn
      dtype: string
    - name: mri_Latn
      dtype: string
    - name: msa_Latn
      dtype: string
    - name: smo_Latn
      dtype: string
    - name: tah_Latn
      dtype: string
    - name: ton_Latn
      dtype: string
    - name: yue_Hant
      dtype: string
    - name: zho_Hans
      dtype: string
  splits:
    - name: test
      num_bytes: 48469088
      num_examples: 1997
  download_size: 25260237
  dataset_size: 48469088
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
tags:
  - mteb
  - text

NTREXBitextMining

An MTEB dataset
Massive Text Embedding Benchmark

NTREX is a News Test References dataset for Machine Translation Evaluation, covering translation from English into 128 languages. We select language pairs according to the M2M-100 language grouping strategy, resulting in 1916 directions.

Task category t2t
Domains News, Written
Reference https://huggingface.co/datasets/davidstap/NTREX

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("NTREXBitextMining")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{federmann-etal-2022-ntrex,
  address = {Online},
  author = {Federmann, Christian and Kocmi, Tom and Xin, Ying},
  booktitle = {Proceedings of the First Workshop on Scaling Up Multilingual Evaluation},
  month = {nov},
  pages = {21--24},
  publisher = {Association for Computational Linguistics},
  title = {{NTREX}-128 {--} News Test References for {MT} Evaluation of 128 Languages},
  url = {https://aclanthology.org/2022.sumeval-1.4},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NTREXBitextMining")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 3826252,
        "number_of_characters": 988355274,
        "unique_pairs": 3820263,
        "min_sentence1_length": 1,
        "average_sentence1_length": 129.15449296073547,
        "max_sentence1_length": 773,
        "unique_sentence1": 241259,
        "min_sentence2_length": 1,
        "average_sentence2_length": 129.15449296073547,
        "max_sentence2_length": 773,
        "unique_sentence2": 241259
    }
}

This dataset card was automatically generated using MTEB