Datasets:
File size: 1,876 Bytes
25f4031 85adb0d 25f4031 85adb0d ea80ffd 85adb0d ea80ffd 25f4031 ea80ffd 10e8614 85adb0d 10e8614 25f4031 85adb0d 10e8614 25f4031 10e8614 ea80ffd 10e8614 25f4031 10e8614 25f4031 10e8614 ea80ffd 85adb0d 10e8614 85adb0d 10e8614 25f4031 10e8614 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
pretty_name: MultiCaRe Articles
license: cc-by-4.0
task_categories:
- text-classification
- text-retrieval
language:
- en
size_categories:
- 100K<n<1M
---
# MultiCaRe: Open-Source Clinical Case Dataset
MultiCaRe aggregates open-access, de-identified clinical case reports from PubMed Central’s OA corpus, pairing article-level metadata and abstracts with case narratives and figure images/captions. The normalization makes it easy to map from images → cases → articles.
- Source and process: parse PMC OA case reports; extract metadata/abstracts; download/process figures; align captions; build a hierarchical taxonomy for image labels.
- Scale: 85k+ OA articles, 160k+ images (v2.0).
- Tasks: article-level retrieval/classification, summarization; joins to cases/images for multimodal tasks.
- Citation: MDPI DATA paper — <https://www.mdpi.com/2306-5729/10/8/123>; Zenodo — <https://zenodo.org/records/13936721>.
This repository: per-article dataset
Per-article dataset with bibliographic metadata and abstracts (one file: articles.parquet).
Schema
- article_id: PMCID (primary key)
- title, journal, year
- doi, pmid, pmcid
- mesh_terms, major_mesh_terms, keywords
- link, license, case_amount
- abstract: article abstract
Quick start
```python
from datasets import load_dataset
art = load_dataset("openmed-community/multicare-articles", split="train")
row = art[0]
print(row["title"])
print(row["abstract"][:600])
```
Join examples
```python
from datasets import load_dataset
art = load_dataset("openmed-community/multicare-articles", split="train")
cas = load_dataset("openmed-community/multicare-cases", split="train")
aid = cas[0]["article_id"]
article = art.filter(lambda e: e["article_id"] == aid)[0]
print(article["title"]) # matching article
```
Notes
- Use article-level splits to avoid leakage when combining with images/cases.
|