File size: 1,876 Bytes
25f4031
85adb0d
 
 
 
 
 
 
 
25f4031
 
85adb0d
ea80ffd
85adb0d
ea80ffd
 
 
 
 
25f4031
ea80ffd
 
10e8614
85adb0d
10e8614
25f4031
85adb0d
 
 
 
 
10e8614
 
 
25f4031
10e8614
 
ea80ffd
10e8614
25f4031
10e8614
 
 
 
25f4031
10e8614
 
ea80ffd
 
85adb0d
10e8614
 
 
 
85adb0d
10e8614
25f4031
10e8614
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
pretty_name: MultiCaRe Articles
license: cc-by-4.0
task_categories:
  - text-classification
  - text-retrieval
language:
  - en
size_categories:
  - 100K<n<1M
---

# MultiCaRe: Open-Source Clinical Case Dataset

MultiCaRe aggregates open-access, de-identified clinical case reports from PubMed Central’s OA corpus, pairing article-level metadata and abstracts with case narratives and figure images/captions. The normalization makes it easy to map from images → cases → articles.

- Source and process: parse PMC OA case reports; extract metadata/abstracts; download/process figures; align captions; build a hierarchical taxonomy for image labels.
- Scale: 85k+ OA articles, 160k+ images (v2.0).
- Tasks: article-level retrieval/classification, summarization; joins to cases/images for multimodal tasks.
- Citation: MDPI DATA paper — <https://www.mdpi.com/2306-5729/10/8/123>; Zenodo — <https://zenodo.org/records/13936721>.

This repository: per-article dataset
Per-article dataset with bibliographic metadata and abstracts (one file: articles.parquet).

Schema

- article_id: PMCID (primary key)
- title, journal, year
- doi, pmid, pmcid
- mesh_terms, major_mesh_terms, keywords
- link, license, case_amount
- abstract: article abstract

Quick start

```python
from datasets import load_dataset
art = load_dataset("openmed-community/multicare-articles", split="train")
row = art[0]
print(row["title"])
print(row["abstract"][:600])
```

Join examples

```python
from datasets import load_dataset
art = load_dataset("openmed-community/multicare-articles", split="train")
cas = load_dataset("openmed-community/multicare-cases", split="train")

aid = cas[0]["article_id"]
article = art.filter(lambda e: e["article_id"] == aid)[0]
print(article["title"])  # matching article
```

Notes

- Use article-level splits to avoid leakage when combining with images/cases.