saaduddinM's picture
Update README.md
591881d verified
|
raw
history blame
7.12 kB
metadata
license: apache-2.0
task_categories:
  - robotics
tags:
  - LeRobot
  - language_table
  - openx
  - xarm
configs:
  - config_name: default
    data_files: data/*.parquet

Language Table (LeRobot) — Embedding-Only Release (DINOv3 + SigLIP2 image features; EmbeddingGemma task-text features)

This repository packages a re-encoded variant of IPEC-COMMUNITY/language_table_lerobot where raw videos are replaced by fixed-length image embeddings, and task strings are augmented with text embeddings. All indices, splits, and semantics remain consistent with the source dataset while storage and I/O are substantially lighter. To make the dataset practical to upload/download and stream from the Hub, we also consolidated ~0.5M tiny per-episode Parquet files into N large Parquet shards under a single data/ folder. The file meta/sharded_index.json preserves a precise mapping from each original episode (referenced by a normalized identifier of the form data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet) to its shard path and row range, so you keep original addressing without paying the small-file tax.

  • Robot: xArm
  • Modalities kept: states, actions, timestamps, frame/episode indices, image embeddings, task-text embeddings
  • Removed: raw video tensors (column observation.images.rgb)
  • License: apache-2.0 (inherits from source)

Quick Stats

From meta/info.json and meta/task_text_embeddings_info.json:

  • Episodes: 442,226
  • Frames: 7,045,476
  • Tasks (unique): 127,605
  • Chunks (original layout): 443 (chunks_size=1000)
  • Shards (this release): N Parquet files under data/ (see meta/sharded_index.json)
  • FPS: 10
  • Image embeddings (per frame):
    • observation.images.rgb_dinov3 → float32 [1024] (DINOv3 ViT-L/16 CLS)
    • observation.images.rgb_siglip2 → float32 [768] (SigLIP2-base)
  • Task-text embeddings (per unique task):
    • embedding → float32 [768] from google/embeddinggemma-300m
    • Count: 127,605 rows (one per task)

Note: This is an embedding-only package. video_path is omitted and the original observation.images.rgb pixels are dropped.


Contents

. ├─ meta/ │ ├─ info.json # dataset overview & feature schema (updated to shards) │ ├─ sharded_index.json # mapping: original-episode-id → shard path + row range │ ├─ tasks.jsonl # {"task_index": int, "task": str} │ ├─ episodes.jsonl # {"task_index": int, "task": str, "length": int} │ └─ task_text_embeddings_info.json # model/dim/normalized/count/file for task embeddings ├─ data/ │ ├─ shard-00000-of-000NN.parquet │ ├─ shard-00001-of-000NN.parquet │ ├─ … # N large Parquet shards for fast HF upload/streaming │ └─ task_text_embeddings.parquet # task_index, task, 768-D EmbeddingGemma vector └─ README.md


How This Was Generated (Reproducible Pipeline)

  1. Episode → Image Embeddings (drop pixels) convert_lerobot_to_embeddings_mono.py (GPU-accelerated preprocessing). Adds:
  • observation.images.rgb_dinov3 (float32[1024])
  • observation.images.rgb_siglip2 (float32[768]) Removes:
  • observation.images.rgb (raw frames)
  1. Task-Text Embeddings (one row per unique task) build_task_text_embeddings.py with SentenceTransformer("google/embeddinggemma-300m") → data/task_text_embeddings.parquet + meta/task_text_embeddings_info.json.

  2. Data Consolidation (this release) All per-episode Parquets were consolidated into N large Parquet shards in one data/ folder.

  • The index meta/sharded_index.json records, for each episode, its normalized source identifier data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet, the destination shard path, and the (row_offset, num_rows) range inside that shard.
  • This preserves original addressing while making Hub sync/clone/stream far faster and more reliable.

Metadata (Excerpts)

meta/task_text_embeddings_info.json

{
  "model": "google/embeddinggemma-300m",
  "dimension": 768,
  "normalized": false,
  "count": 127605,
  "file": "task_text_embeddings.parquet"
}

meta/info.json (embedding-only + shards) json { "codebase_version": "v2.0-embeddings-sharded", "robot_type": "xarm", "total_episodes": 442226, "total_frames": 7045476, "total_tasks": 127605, "total_videos": 442226, "total_chunks": 443, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:442226" }, "data_path": "data/shard-{shard_id:05d}-of-{num_shards:05d}.parquet", "features": { "observation.state": { "dtype": "float32", "shape": [ 8 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "pad", "gripper" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "observation.images.rgb_dinov3": { "dtype": "float32", "shape": [ 1024 ], "names": null }, "observation.images.rgb_siglip2": { "dtype": "float32", "shape": [ 768 ], "names": null } }, "num_shards": 64, "index_path": "meta/sharded_index.json" }

Environment & Dependencies

Python ≥ 3.9 • PyTorch ≥ 2.1 • transformers • sentence-transformers • pyarrow • tqdm • decord (and optionally av)


Provenance, License, and Citation

  • Source dataset: IPEC-COMMUNITY/language_table_lerobot
  • License: apache-2.0 (inherits from the source)
  • Encoders to cite:
    • facebook/dinov3-vitl16-pretrain-lvd1689m
    • google/siglip2-base-patch16-384
    • google/embeddinggemma-300m

Changelog

  • v2.0-embeddings-sharded — Replaced video tensors with DINOv3 + SigLIP2 features; added EmbeddingGemma task-text embeddings; consolidated per-episode Parquets into N shards with a repo-local index; preserved original indexing/splits via normalized episode identifiers.