File size: 14,145 Bytes
a2ef4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e700c
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ef4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e700c
 
 
 
 
 
 
a2ef4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly
    Health Services 1. To promote volunteerism as a tool for fostering active participation
    of young people in national development; 5. To promote volunteerism as a tool
    for fostering active participation of young people in national development; 5.
- text: 4) Mainstream appropriate food and nutrition issues in relevant sector policies
    and strategies. 4) Mainstream appropriate food and nutrition issues in relevant
    sector policies and strategies. ), these and many others have varying requirements
    related to 3.5 Communication Support for Food and Nutrition Programmes and Interventions
    National Food and Nutrition Strategic Plan 2011-2015 11 generation of demand by
    the population.
- text: incidence of stunting reduced from 39 to 35 percent, and population with calories
    deficit from 35 to 31 percent) and public food distribution ( i.e from 20 thousand
    MT to 39 thousand MT and food sales by 29 thousand MT). It states that “the main
    objective of the food security plan is to make the life of the targeted people
    healthy and productive by improving national food sovereignty and the food and
    nutrition situation.” Accordingly, the TYIP set out and scaled up the quantities
    targets in terms of per capita food production (i.e., from 280–289 kg per capita
    annually), indicators of nutrition ( i.e. Food procurement policy should be made
    as a vehicle of ensuring sufficient supply of essential food items and also a
    means of containing prices.
- text: 'UP-5978 “On additional measures to support the public, economic3 April 2020:
    Presidential Decree No. Tax benefitsTax benefits The Decree 5969, the Decree 5978,
    and the Decree 5986 (together the “Decrees”) have introduced the followingThe
    Decree 5969, the Decree 5978, and the Decree 5986 (together the “Decrees”) have
    introduced the following tax reductions (benefits) for businesses:tax reductions
    (benefits) for businesses: for the period from 1 April 2020 to 1 October 2020:for
    the period from 1 April 2020 to 1 October 2020: 02/06/2020 COVID-19: Uzbekistan
    Government Financial Assistance Measures - Lexology https://www.lexology.com/library/detail.aspx?g=1d5e31b2-e7b1-44c9-8c9e-7d4bc5975bc2
    3/5 the minimum amount of social tax for individual entrepreneurs is reduced to
    the minimum amount of social tax for individual entrepreneurs is reduced to 50%50%
    of the base of the base calculated amount (“BCA”) per month;calculated amount
    (“BCA”) per month; the amount of mandatory payments for wholesalers of alcoholic
    beverages is reduced from the amount of mandatory payments for wholesalers of
    alcoholic beverages is reduced from 5 to5 to 3%3%; and; and fees for the right
    to retail sale of alcoholic products by catering enterprises are reduced byfees
    for the right to retail sale of alcoholic products by catering enterprises are
    reduced by 25% 25% of of the amounts set under law.the amounts set under law.
    These measures provide certain guarantees and protections, including deferred
    tax payments, decrease of taxThese measures provide certain guarantees and protections,
    including deferred tax payments, decrease of tax rates, tax related waivers and
    exemptions, as well as liquidity support measures.rates, tax related waivers and
    exemptions, as well as liquidity support measures.'
- text: 'The composition and nutritional content of the food ration for each beneficiary
    group are as follows: 19 While only the poorest families in the most food-insecure
    districts will receive general food distributions, in the poorest districts supplementary
    feeding will be targeted to all children 6-24 months, pregnant/lactating women
    and all moderately- malnourished children. 10767.0 Results-Chain (Logic Model)
    Performance Indicators Risks, Assumptions STRATEGIC OBJECTIVE 1 - Save Lives and
    Protect Livelihoods in Emergencies Outcome 1.1: Reduced acute malnutrition in
    children under 5 in targeted emergency-affected populations Outcome 1.3: Improved
    food consumption over assistance period for targeted crisis-affected beneficiaries.
    (b) The food and nutrition situation 9.'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.39185750636132316
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 128 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.3919   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/20250908_model_g20_multilabel_MiniLM-L12-all-labels")
# Run inference
preds = model("4.3.3 Strategies for Comprehensive Sexuality Education and (CSE) Youth-friendly Health Services 1. To promote volunteerism as a tool for fostering active participation of young people in national development; 5. To promote volunteerism as a tool for fostering active participation of young people in national development; 5.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max  |
|:-------------|:----|:--------|:-----|
| Word count   | 2   | 70.5122 | 1194 |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0005 | 1    | 0.1435        | -               |
| 0.0241 | 50   | 0.1438        | -               |
| 0.0482 | 100  | 0.1239        | -               |
| 0.0723 | 150  | 0.1073        | -               |
| 0.0964 | 200  | 0.0992        | -               |
| 0.1205 | 250  | 0.0883        | -               |
| 0.1446 | 300  | 0.08          | -               |
| 0.1687 | 350  | 0.0801        | -               |
| 0.1928 | 400  | 0.073         | -               |
| 0.2169 | 450  | 0.0647        | -               |
| 0.2410 | 500  | 0.0549        | -               |
| 0.2651 | 550  | 0.0575        | -               |
| 0.2892 | 600  | 0.0544        | -               |
| 0.3133 | 650  | 0.0523        | -               |
| 0.3373 | 700  | 0.0506        | -               |
| 0.3614 | 750  | 0.0467        | -               |
| 0.3855 | 800  | 0.0443        | -               |
| 0.4096 | 850  | 0.0385        | -               |
| 0.4337 | 900  | 0.0425        | -               |
| 0.4578 | 950  | 0.0412        | -               |
| 0.4819 | 1000 | 0.036         | -               |
| 0.5060 | 1050 | 0.0323        | -               |
| 0.5301 | 1100 | 0.0352        | -               |
| 0.5542 | 1150 | 0.0347        | -               |
| 0.5783 | 1200 | 0.0319        | -               |
| 0.6024 | 1250 | 0.0254        | -               |
| 0.6265 | 1300 | 0.0291        | -               |
| 0.6506 | 1350 | 0.0253        | -               |
| 0.6747 | 1400 | 0.0283        | -               |
| 0.6988 | 1450 | 0.0248        | -               |
| 0.7229 | 1500 | 0.02          | -               |
| 0.7470 | 1550 | 0.0249        | -               |
| 0.7711 | 1600 | 0.0208        | -               |
| 0.7952 | 1650 | 0.021         | -               |
| 0.8193 | 1700 | 0.0238        | -               |
| 0.8434 | 1750 | 0.0196        | -               |
| 0.8675 | 1800 | 0.0213        | -               |
| 0.8916 | 1850 | 0.0222        | -               |
| 0.9157 | 1900 | 0.019         | -               |
| 0.9398 | 1950 | 0.0226        | -               |
| 0.9639 | 2000 | 0.0156        | -               |
| 0.9880 | 2050 | 0.0193        | -               |
| 1.0120 | 2100 | 0.016         | -               |
| 1.0361 | 2150 | 0.019         | -               |
| 1.0602 | 2200 | 0.0154        | -               |
| 1.0843 | 2250 | 0.0136        | -               |
| 1.1084 | 2300 | 0.014         | -               |
| 1.1325 | 2350 | 0.0147        | -               |
| 1.1566 | 2400 | 0.0126        | -               |
| 1.1807 | 2450 | 0.0161        | -               |
| 1.2048 | 2500 | 0.0123        | -               |
| 1.2289 | 2550 | 0.0151        | -               |
| 1.2530 | 2600 | 0.0123        | -               |
| 1.2771 | 2650 | 0.0122        | -               |
| 1.3012 | 2700 | 0.0084        | -               |
| 1.3253 | 2750 | 0.0154        | -               |
| 1.3494 | 2800 | 0.014         | -               |
| 1.3735 | 2850 | 0.0124        | -               |
| 1.3976 | 2900 | 0.0146        | -               |
| 1.4217 | 2950 | 0.0103        | -               |
| 1.4458 | 3000 | 0.0116        | -               |
| 1.4699 | 3050 | 0.013         | -               |
| 1.4940 | 3100 | 0.0104        | -               |
| 1.5181 | 3150 | 0.0124        | -               |
| 1.5422 | 3200 | 0.0127        | -               |
| 1.5663 | 3250 | 0.0122        | -               |
| 1.5904 | 3300 | 0.0092        | -               |
| 1.6145 | 3350 | 0.0108        | -               |
| 1.6386 | 3400 | 0.0121        | -               |
| 1.6627 | 3450 | 0.0125        | -               |
| 1.6867 | 3500 | 0.0162        | -               |
| 1.7108 | 3550 | 0.0105        | -               |
| 1.7349 | 3600 | 0.0133        | -               |
| 1.7590 | 3650 | 0.0145        | -               |
| 1.7831 | 3700 | 0.0113        | -               |
| 1.8072 | 3750 | 0.009         | -               |
| 1.8313 | 3800 | 0.0105        | -               |
| 1.8554 | 3850 | 0.011         | -               |
| 1.8795 | 3900 | 0.0087        | -               |
| 1.9036 | 3950 | 0.0159        | -               |
| 1.9277 | 4000 | 0.0101        | -               |
| 1.9518 | 4050 | 0.0112        | -               |
| 1.9759 | 4100 | 0.0111        | -               |
| 2.0    | 4150 | 0.0124        | -               |

### Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->