|
--- |
|
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 |
|
library_name: diffusers |
|
license: creativeml-openrail-m |
|
inference: true |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- textual_inversion |
|
- diffusers-training |
|
language: |
|
- en |
|
datasets: |
|
- diffusers/cat_toy_example |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the training script had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# Textual inversion text2image fine-tuning - intipendrdra/textual_inversion_cat |
|
These are textual inversion adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. You can find some example images in the following. |
|
|
|
|
|
|
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") |
|
pipe.load_textual_inversion("intipendrdra/textual_inversion_cat") |
|
|
|
prompt = "a <cat> sitting on a sofa, highly detailed, 4k" |
|
image = pipe(prompt).images[0] |
|
|
|
image.show() |
|
|
|
image.save("cat.png") |
|
|
|
``` |
|
|
|
|
|
#### Limitations and bias |
|
|
|
[TODO: provide examples of latent issues and potential remediations] |
|
|
|
## Training details |
|
|
|
[TODO: describe the data used to train the model] |