idx
int64
0
7.85k
idx_lca
int64
0
223
offset
int64
162
55k
repo
stringclasses
62 values
commit_hash
stringclasses
113 values
target_file
stringclasses
134 values
line_type_lca
stringclasses
7 values
ground_truth
stringlengths
1
46
in_completions
bool
1 class
completion_type
stringclasses
6 values
non_dunder_count_intellij
int64
0
529
non_dunder_count_jedi
int64
0
128
start_with_
bool
2 classes
first_occurrence
bool
2 classes
intellij_completions
listlengths
1
532
jedi_completions
listlengths
3
148
prefix
stringlengths
162
55k
137
6
2,207
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
Unknown
offspring
true
statement
16
17
false
false
[ "population", "toolbox", "n_pop", "children", "offspring", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.
139
6
2,283
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
inproject
n_pop
true
statement
15
17
false
false
[ "population", "toolbox", "offspring", "n_pop", "children", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.
140
6
2,295
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
inproject
vocs
true
property
15
17
false
false
[ "vocs", "population", "toolbox", "offspring", "n_pop", "__init__", "_vocs", "children", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.
141
6
2,306
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
inproject
toolbox
true
statement
15
17
false
false
[ "toolbox", "population", "offspring", "n_pop", "children", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.
144
6
2,635
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
Unknown
children
true
statement
15
17
false
true
[ "n_pop", "offspring", "population", "toolbox", "children", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.
145
6
2,678
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
infile
children
true
statement
15
17
false
false
[ "n_pop", "toolbox", "offspring", "population", "children", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.
146
6
2,699
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
infile
create_children
true
function
15
17
false
true
[ "children", "n_pop", "offspring", "population", "toolbox", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.children.extend(self.
147
6
2,749
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
Unknown
children
true
statement
15
17
false
false
[ "n_pop", "toolbox", "offspring", "population", "children", "__init__", "_vocs", "create_children", "crossover_probability", "generate", "mutation_probability", "update_data", "data", "is_done", "options", "vocs", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "children", "type": "statement" }, { "name": "create_children", "type": "function" }, { "name": "crossover_probability", "type": "statement" }, { "name": "data", "type": "property" }, { "name": "generate", "type": "function" }, { "name": "is_done", "type": "property" }, { "name": "mutation_probability", "type": "statement" }, { "name": "n_pop", "type": "statement" }, { "name": "offspring", "type": "statement" }, { "name": "options", "type": "statement" }, { "name": "population", "type": "statement" }, { "name": "toolbox", "type": "statement" }, { "name": "update_data", "type": "function" }, { "name": "vocs", "type": "property" }, { "name": "_data", "type": "statement" }, { "name": "_is_done", "type": "statement" }, { "name": "_vocs", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.children.extend(self.create_children()) return [self.
149
6
4,085
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
common
create
true
function
6
11
false
true
[ "create", "MetaCreator", "meta_create", "class_replacers", "_array", "_numpy_array" ]
[ { "name": "array", "type": "module" }, { "name": "class_replacers", "type": "statement" }, { "name": "copy", "type": "module" }, { "name": "copyreg", "type": "module" }, { "name": "create", "type": "function" }, { "name": "meta_create", "type": "function" }, { "name": "MetaCreator", "type": "class" }, { "name": "numpy", "type": "module" }, { "name": "warnings", "type": "module" }, { "name": "_array", "type": "class" }, { "name": "_numpy_array", "type": "class" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.children.extend(self.create_children()) return [self.children.pop() for _ in range(n_candidates)] def uniform(low, up, size=None): """ """ try: return [random.uniform(a, b) for a, b in zip(low, up)] except TypeError: return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)] def cnsga_toolbox(vocs, selection='auto'): """ Creates a DEAP toolbox from VOCS dict for use with cnsga. Selection options: nsga2: Standard NSGA2 [Deb2002] selection nsga3: NSGA3 [Deb2014] selection spea2: SPEA-II [Zitzler2001] selection auto: will choose nsga2 for <= 2 objectives, otherwise nsga3 See DEAP code for details. """ var, obj, con = vocs.variables, vocs.objectives, vocs.constraints n_var = len(var) n_obj = len(obj) n_con = len(con) var_labels = vocs.variable_names obj_labels = vocs.objective_names bound_low, bound_up = vocs.bounds # DEAP does not like arrays, needs tuples. bound_low = tuple(bound_low) bound_up = tuple(bound_up) # creator should assign already weighted values (for minimization) weights = tuple([-1]*n_obj) # Create MyFitness if 'MyFitness' in dir(deap_creator): del deap_creator.MyFitness if n_con == 0: # Normal Fitness class deap_creator.
150
6
4,226
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
common
create
true
function
6
11
false
false
[ "create", "MetaCreator", "meta_create", "class_replacers", "_array", "_numpy_array" ]
[ { "name": "array", "type": "module" }, { "name": "class_replacers", "type": "statement" }, { "name": "copy", "type": "module" }, { "name": "copyreg", "type": "module" }, { "name": "create", "type": "function" }, { "name": "meta_create", "type": "function" }, { "name": "MetaCreator", "type": "class" }, { "name": "numpy", "type": "module" }, { "name": "warnings", "type": "module" }, { "name": "_array", "type": "class" }, { "name": "_numpy_array", "type": "class" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.children.extend(self.create_children()) return [self.children.pop() for _ in range(n_candidates)] def uniform(low, up, size=None): """ """ try: return [random.uniform(a, b) for a, b in zip(low, up)] except TypeError: return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)] def cnsga_toolbox(vocs, selection='auto'): """ Creates a DEAP toolbox from VOCS dict for use with cnsga. Selection options: nsga2: Standard NSGA2 [Deb2002] selection nsga3: NSGA3 [Deb2014] selection spea2: SPEA-II [Zitzler2001] selection auto: will choose nsga2 for <= 2 objectives, otherwise nsga3 See DEAP code for details. """ var, obj, con = vocs.variables, vocs.objectives, vocs.constraints n_var = len(var) n_obj = len(obj) n_con = len(con) var_labels = vocs.variable_names obj_labels = vocs.objective_names bound_low, bound_up = vocs.bounds # DEAP does not like arrays, needs tuples. bound_low = tuple(bound_low) bound_up = tuple(bound_up) # creator should assign already weighted values (for minimization) weights = tuple([-1]*n_obj) # Create MyFitness if 'MyFitness' in dir(deap_creator): del deap_creator.MyFitness if n_con == 0: # Normal Fitness class deap_creator.create('MyFitness', deap_base.Fitness, weights=weights, labels=obj_labels) else: # Fitness with Constraints deap_creator.
152
6
4,500
christophermayes__xopt
683fd0c3af2f0fc12a598932b20e3afe8070112b
xopt/generators/ga/cnsga.py
common
create
true
function
6
11
false
false
[ "create", "MetaCreator", "meta_create", "class_replacers", "_array", "_numpy_array" ]
[ { "name": "array", "type": "module" }, { "name": "class_replacers", "type": "statement" }, { "name": "copy", "type": "module" }, { "name": "copyreg", "type": "module" }, { "name": "create", "type": "function" }, { "name": "meta_create", "type": "function" }, { "name": "MetaCreator", "type": "class" }, { "name": "numpy", "type": "module" }, { "name": "warnings", "type": "module" }, { "name": "_array", "type": "class" }, { "name": "_numpy_array", "type": "class" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
from xopt.generators.ga import deap_creator from xopt.generators.ga.deap_fitness_with_constraints import FitnessWithConstraints from xopt import Generator from deap import base as deap_base from deap import tools as deap_tools from deap import algorithms as deap_algorithms import pandas as pd import random import array from typing import List, Dict import logging logger = logging.getLogger(__name__) from typing import List, Dict class CNSGAGenerator(Generator): def __init__(self, vocs, *, n_pop, data = None, crossover_probability = 0.9, mutation_probability = 1.0 ): self._vocs = vocs # TODO: use proper options self.n_pop = n_pop self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability # Internal data structures self.children = [] # unevaluated inputs. This should be a list of dicts. self.population = None # The latest population (fully evaluated) self.offspring = None # Newly evaluated data, but not yet added to population # DEAP toolbox (internal) self.toolbox = cnsga_toolbox(vocs, selection='auto') if data is not None: self.population = cnsga_select(data, n_pop, vocs, self.toolbox) def create_children(self): # No population, so create random children if self.population is None: return [self.vocs.random_inputs() for _ in range(self.n_pop)] # Use population to create children inputs = cnsga_variation(self.population, self.vocs, self.toolbox, crossover_probability=self.crossover_probability, mutation_probability=self.mutation_probability) return inputs.to_dict(orient='records') def update_data(self, new_data: pd.DataFrame): self.offspring = pd.concat([self.offspring, new_data]) # Next generation if len(self.offspring) >= self.n_pop: if self.population is None: self.population = self.offspring.iloc[:self.n_pop] self.offspring = self.offspring.iloc[self.n_pop:] else: candidates = pd.concat([self.population, self.offspring]) self.population = cnsga_select(candidates, self.n_pop, self.vocs, self.toolbox) self.children = [] # reset children self.offspring = None # reset offspring def generate(self, n_candidates) -> List[Dict]: """ generate `n_candidates` candidates """ # Make sure we have enough children to fulfill the request while len(self.children) < n_candidates: self.children.extend(self.create_children()) return [self.children.pop() for _ in range(n_candidates)] def uniform(low, up, size=None): """ """ try: return [random.uniform(a, b) for a, b in zip(low, up)] except TypeError: return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)] def cnsga_toolbox(vocs, selection='auto'): """ Creates a DEAP toolbox from VOCS dict for use with cnsga. Selection options: nsga2: Standard NSGA2 [Deb2002] selection nsga3: NSGA3 [Deb2014] selection spea2: SPEA-II [Zitzler2001] selection auto: will choose nsga2 for <= 2 objectives, otherwise nsga3 See DEAP code for details. """ var, obj, con = vocs.variables, vocs.objectives, vocs.constraints n_var = len(var) n_obj = len(obj) n_con = len(con) var_labels = vocs.variable_names obj_labels = vocs.objective_names bound_low, bound_up = vocs.bounds # DEAP does not like arrays, needs tuples. bound_low = tuple(bound_low) bound_up = tuple(bound_up) # creator should assign already weighted values (for minimization) weights = tuple([-1]*n_obj) # Create MyFitness if 'MyFitness' in dir(deap_creator): del deap_creator.MyFitness if n_con == 0: # Normal Fitness class deap_creator.create('MyFitness', deap_base.Fitness, weights=weights, labels=obj_labels) else: # Fitness with Constraints deap_creator.create('MyFitness', FitnessWithConstraints, weights=weights, n_constraints=n_con, labels=obj_labels) # Create Individual. Check if exists first. if 'Individual' in dir(deap_creator): del deap_creator.Individual deap_creator.
153
7
1,356
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_ZARR_STORE
true
statement
14
14
false
true
[ "OUTPUT_NC_FILE", "OUTPUT_NC_FILE_2", "OUTPUT_ZARR_STORE", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_not_implemented_error", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.
154
7
1,431
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_NC_FILE
true
statement
15
14
false
true
[ "OUTPUT_NC_FILE", "OUTPUT_NC_FILE_2", "OUTPUT_ZARR_STORE", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_not_implemented_error", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.
155
7
1,464
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_NC_FILE_2
true
statement
15
14
false
true
[ "OUTPUT_NC_FILE", "OUTPUT_NC_FILE_2", "OUTPUT_UNKNOWN_FORMAT", "OUTPUT_ZARR_STORE", "test_read_dataset_not_implemented_error", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.
156
7
1,499
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_UNKNOWN_FORMAT
true
statement
15
14
false
true
[ "OUTPUT_NC_FILE_2", "OUTPUT_NC_FILE", "OUTPUT_ZARR_STORE", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "cleanup", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.
157
7
2,688
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
WW
true
instance
53
62
false
true
[ "TX90P", "name", "CD", "CW", "SD", "CDD", "CFD", "CSDI", "CSU", "CWD", "DTR", "ETR", "FD", "GD4", "HD17", "ID", "lookup", "PRCPTOT", "R10MM", "R20MM", "R75P", "R75PTOT", "R95P", "R95PTOT", "R99P", "R99PTOT", "RR1", "RX1DAY", "RX5DAY", "SD1", "SD5CM", "SD50CM", "SDII", "SU", "TG", "TG10P", "TG90P", "TN", "TN10P", "TN90P", "TNN", "TNX", "TR", "TX", "TX10P", "TXN", "TXX", "VDTR", "WD", "WSDI", "WW", "mro", "value", "__init__", "__annotations__", "__base__", "__bases__", "__basicsize__", "__bool__", "__call__", "__contains__", "__delattr__", "__dict__", "__dictoffset__", "__dir__", "__eq__", "__flags__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init_subclass__", "__instancecheck__", "__itemsize__", "__iter__", "__len__", "__members__", "__mro__", "__name__", "__ne__", "__new__", "__or__", "__order__", "__prepare__", "__qualname__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__sizeof__", "__str__", "__subclasscheck__", "__subclasses__", "__subclasshook__", "__text_signature__", "__weakrefoffset__", "__class__", "__doc__", "__module__" ]
[ { "name": "CD", "type": "instance" }, { "name": "CDD", "type": "instance" }, { "name": "CFD", "type": "instance" }, { "name": "CSDI", "type": "instance" }, { "name": "CSU", "type": "instance" }, { "name": "CW", "type": "instance" }, { "name": "CWD", "type": "instance" }, { "name": "DTR", "type": "instance" }, { "name": "ETR", "type": "instance" }, { "name": "FD", "type": "instance" }, { "name": "GD4", "type": "instance" }, { "name": "HD17", "type": "instance" }, { "name": "ID", "type": "instance" }, { "name": "lookup", "type": "function" }, { "name": "mro", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "PRCPTOT", "type": "instance" }, { "name": "R10MM", "type": "instance" }, { "name": "R20MM", "type": "instance" }, { "name": "R75P", "type": "instance" }, { "name": "R75PTOT", "type": "instance" }, { "name": "R95P", "type": "instance" }, { "name": "R95PTOT", "type": "instance" }, { "name": "R99P", "type": "instance" }, { "name": "R99PTOT", "type": "instance" }, { "name": "RR1", "type": "instance" }, { "name": "RX1DAY", "type": "instance" }, { "name": "RX5DAY", "type": "instance" }, { "name": "SD", "type": "instance" }, { "name": "SD1", "type": "instance" }, { "name": "SD50CM", "type": "instance" }, { "name": "SD5CM", "type": "instance" }, { "name": "SDII", "type": "instance" }, { "name": "SU", "type": "instance" }, { "name": "TG", "type": "instance" }, { "name": "TG10P", "type": "instance" }, { "name": "TG90P", "type": "instance" }, { "name": "TN", "type": "instance" }, { "name": "TN10P", "type": "instance" }, { "name": "TN90P", "type": "instance" }, { "name": "TNN", "type": "instance" }, { "name": "TNX", "type": "instance" }, { "name": "TR", "type": "instance" }, { "name": "TX", "type": "instance" }, { "name": "TX10P", "type": "instance" }, { "name": "TX90P", "type": "instance" }, { "name": "TXN", "type": "instance" }, { "name": "TXX", "type": "instance" }, { "name": "value", "type": "statement" }, { "name": "VDTR", "type": "instance" }, { "name": "WD", "type": "instance" }, { "name": "WSDI", "type": "instance" }, { "name": "WW", "type": "instance" }, { "name": "_generate_next_value_", "type": "function" }, { "name": "_ignore_", "type": "statement" }, { "name": "_member_map_", "type": "statement" }, { "name": "_member_names_", "type": "statement" }, { "name": "_missing_", "type": "function" }, { "name": "_name_", "type": "statement" }, { "name": "_order_", "type": "statement" }, { "name": "_value2member_map_", "type": "statement" }, { "name": "_value_", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__base__", "type": "statement" }, { "name": "__bases__", "type": "statement" }, { "name": "__basicsize__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dictoffset__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__flags__", "type": "statement" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__instancecheck__", "type": "function" }, { "name": "__itemsize__", "type": "statement" }, { "name": "__module__", "type": "statement" }, { "name": "__mro__", "type": "statement" }, { "name": "__name__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__order__", "type": "statement" }, { "name": "__prepare__", "type": "function" }, { "name": "__qualname__", "type": "statement" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasscheck__", "type": "function" }, { "name": "__subclasses__", "type": "function" }, { "name": "__text_signature__", "type": "statement" }, { "name": "__weakrefoffset__", "type": "statement" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.
158
7
3,183
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
TX90P
true
instance
53
62
false
true
[ "WW", "name", "CD", "CW", "SD", "CDD", "CFD", "CSDI", "CSU", "CWD", "DTR", "ETR", "FD", "GD4", "HD17", "ID", "lookup", "PRCPTOT", "R10MM", "R20MM", "R75P", "R75PTOT", "R95P", "R95PTOT", "R99P", "R99PTOT", "RR1", "RX1DAY", "RX5DAY", "SD1", "SD5CM", "SD50CM", "SDII", "SU", "TG", "TG10P", "TG90P", "TN", "TN10P", "TN90P", "TNN", "TNX", "TR", "TX", "TX10P", "TX90P", "TXN", "TXX", "VDTR", "WD", "WSDI", "mro", "value", "__init__", "__annotations__", "__base__", "__bases__", "__basicsize__", "__bool__", "__call__", "__contains__", "__delattr__", "__dict__", "__dictoffset__", "__dir__", "__eq__", "__flags__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init_subclass__", "__instancecheck__", "__itemsize__", "__iter__", "__len__", "__members__", "__mro__", "__name__", "__ne__", "__new__", "__or__", "__order__", "__prepare__", "__qualname__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__sizeof__", "__str__", "__subclasscheck__", "__subclasses__", "__subclasshook__", "__text_signature__", "__weakrefoffset__", "__class__", "__doc__", "__module__" ]
[ { "name": "CD", "type": "instance" }, { "name": "CDD", "type": "instance" }, { "name": "CFD", "type": "instance" }, { "name": "CSDI", "type": "instance" }, { "name": "CSU", "type": "instance" }, { "name": "CW", "type": "instance" }, { "name": "CWD", "type": "instance" }, { "name": "DTR", "type": "instance" }, { "name": "ETR", "type": "instance" }, { "name": "FD", "type": "instance" }, { "name": "GD4", "type": "instance" }, { "name": "HD17", "type": "instance" }, { "name": "ID", "type": "instance" }, { "name": "lookup", "type": "function" }, { "name": "mro", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "PRCPTOT", "type": "instance" }, { "name": "R10MM", "type": "instance" }, { "name": "R20MM", "type": "instance" }, { "name": "R75P", "type": "instance" }, { "name": "R75PTOT", "type": "instance" }, { "name": "R95P", "type": "instance" }, { "name": "R95PTOT", "type": "instance" }, { "name": "R99P", "type": "instance" }, { "name": "R99PTOT", "type": "instance" }, { "name": "RR1", "type": "instance" }, { "name": "RX1DAY", "type": "instance" }, { "name": "RX5DAY", "type": "instance" }, { "name": "SD", "type": "instance" }, { "name": "SD1", "type": "instance" }, { "name": "SD50CM", "type": "instance" }, { "name": "SD5CM", "type": "instance" }, { "name": "SDII", "type": "instance" }, { "name": "SU", "type": "instance" }, { "name": "TG", "type": "instance" }, { "name": "TG10P", "type": "instance" }, { "name": "TG90P", "type": "instance" }, { "name": "TN", "type": "instance" }, { "name": "TN10P", "type": "instance" }, { "name": "TN90P", "type": "instance" }, { "name": "TNN", "type": "instance" }, { "name": "TNX", "type": "instance" }, { "name": "TR", "type": "instance" }, { "name": "TX", "type": "instance" }, { "name": "TX10P", "type": "instance" }, { "name": "TX90P", "type": "instance" }, { "name": "TXN", "type": "instance" }, { "name": "TXX", "type": "instance" }, { "name": "value", "type": "statement" }, { "name": "VDTR", "type": "instance" }, { "name": "WD", "type": "instance" }, { "name": "WSDI", "type": "instance" }, { "name": "WW", "type": "instance" }, { "name": "_generate_next_value_", "type": "function" }, { "name": "_ignore_", "type": "statement" }, { "name": "_member_map_", "type": "statement" }, { "name": "_member_names_", "type": "statement" }, { "name": "_missing_", "type": "function" }, { "name": "_name_", "type": "statement" }, { "name": "_order_", "type": "statement" }, { "name": "_value2member_map_", "type": "statement" }, { "name": "_value_", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__base__", "type": "statement" }, { "name": "__bases__", "type": "statement" }, { "name": "__basicsize__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dictoffset__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__flags__", "type": "statement" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__instancecheck__", "type": "function" }, { "name": "__itemsize__", "type": "statement" }, { "name": "__module__", "type": "statement" }, { "name": "__mro__", "type": "statement" }, { "name": "__name__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__order__", "type": "statement" }, { "name": "__prepare__", "type": "function" }, { "name": "__qualname__", "type": "statement" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasscheck__", "type": "function" }, { "name": "__subclasses__", "type": "function" }, { "name": "__text_signature__", "type": "statement" }, { "name": "__weakrefoffset__", "type": "statement" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.
159
7
5,173
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_NC_FILE
true
statement
14
14
false
false
[ "OUTPUT_NC_FILE", "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE_2", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_xr_ds_success", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.
160
7
5,234
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
OUTPUT_NC_FILE
true
statement
14
14
false
false
[ "OUTPUT_NC_FILE", "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE_2", "test_read_dataset_xr_ds_success", "OUTPUT_UNKNOWN_FORMAT", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.
161
7
5,952
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_NC_FILE
true
statement
14
14
false
false
[ "OUTPUT_NC_FILE", "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE_2", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_netcdf_success", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.
162
7
6,025
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_NC_FILE_2
true
statement
14
14
false
false
[ "OUTPUT_NC_FILE", "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE_2", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_netcdf_success", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_xr_ds_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds.rename({"pouet": "patapouet"}).to_netcdf(self.
163
7
6,104
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
OUTPUT_NC_FILE
true
statement
15
14
false
false
[ "OUTPUT_NC_FILE", "test_read_dataset_xr_ds_success", "OUTPUT_NC_FILE_2", "OUTPUT_ZARR_STORE", "test_read_dataset_netcdf_success", "cleanup", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_multi_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds.rename({"pouet": "patapouet"}).to_netcdf(self.OUTPUT_NC_FILE_2) # WHEN ds_res, chunk_it = read_dataset([self.
164
7
6,125
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
OUTPUT_NC_FILE_2
true
statement
15
14
false
false
[ "OUTPUT_NC_FILE_2", "OUTPUT_NC_FILE", "OUTPUT_UNKNOWN_FORMAT", "OUTPUT_ZARR_STORE", "test_read_dataset_xr_ds_success", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "for", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds.rename({"pouet": "patapouet"}).to_netcdf(self.OUTPUT_NC_FILE_2) # WHEN ds_res, chunk_it = read_dataset([self.OUTPUT_NC_FILE, self.
165
7
6,917
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
Unknown
OUTPUT_ZARR_STORE
true
statement
14
14
false
false
[ "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE", "OUTPUT_NC_FILE_2", "OUTPUT_UNKNOWN_FORMAT", "test_read_dataset_xr_ds_success", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds.rename({"pouet": "patapouet"}).to_netcdf(self.OUTPUT_NC_FILE_2) # WHEN ds_res, chunk_it = read_dataset([self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2]) # THEN xr.testing.assert_equal(ds_res.pouet, ds.pouet) xr.testing.assert_equal(ds_res.patapouet, ds.pouet) assert chunk_it is True def test_read_dataset_zarr_store_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_zarr(self.
166
7
6,996
cerfacs-globc__icclim
7d571ec4d1e1b1fcc1433bb178de2bc0f2f2f0b7
icclim/tests/unit_tests/test_input_parsing.py
inproject
OUTPUT_ZARR_STORE
true
statement
14
14
false
false
[ "OUTPUT_ZARR_STORE", "OUTPUT_NC_FILE", "OUTPUT_NC_FILE_2", "test_read_dataset_xr_ds_success", "OUTPUT_UNKNOWN_FORMAT", "cleanup", "test_read_dataset_multi_netcdf_success", "test_read_dataset_netcdf_success", "test_read_dataset_not_implemented_error", "test_read_dataset_xr_da_ecad_index_error", "test_read_dataset_xr_da_ecad_index_success", "test_read_dataset_xr_da_user_index_error", "test_read_dataset_xr_da_user_index_success", "test_read_dataset_zarr_store_success", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "cleanup", "type": "function" }, { "name": "OUTPUT_NC_FILE", "type": "statement" }, { "name": "OUTPUT_NC_FILE_2", "type": "statement" }, { "name": "OUTPUT_UNKNOWN_FORMAT", "type": "statement" }, { "name": "OUTPUT_ZARR_STORE", "type": "statement" }, { "name": "test_read_dataset_multi_netcdf_success", "type": "function" }, { "name": "test_read_dataset_netcdf_success", "type": "function" }, { "name": "test_read_dataset_not_implemented_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_ecad_index_success", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_error", "type": "function" }, { "name": "test_read_dataset_xr_da_user_index_success", "type": "function" }, { "name": "test_read_dataset_xr_ds_success", "type": "function" }, { "name": "test_read_dataset_zarr_store_success", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import os import shutil import numpy as np import pandas as pd import pytest import xarray as xr from icclim.icclim_exceptions import InvalidIcclimArgumentError from icclim.models.ecad_indices import EcadIndex from icclim.pre_processing.input_parsing import read_dataset, update_to_standard_coords def test_update_to_standard_coords(): # GIVEN ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) # WHEN res, revert = update_to_standard_coords(ds) # THEN assert "lat" in res.coords assert "time" in res.coords assert "lon" in res.coords assert res.rename(revert).coords.keys() == ds.coords.keys() class Test_ReadDataset: OUTPUT_NC_FILE = "tmp.nc" OUTPUT_NC_FILE_2 = "tmp-2.nc" OUTPUT_ZARR_STORE = "tmp.zarr" OUTPUT_UNKNOWN_FORMAT = "tmp.cacahuete" @pytest.fixture(autouse=True) def cleanup(self): # setup yield # teardown shutil.rmtree(self.OUTPUT_ZARR_STORE, ignore_errors=True) for f in [ self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2, self.OUTPUT_UNKNOWN_FORMAT, ]: try: os.remove(f) except FileNotFoundError: pass def test_read_dataset_xr_da_user_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da) def test_read_dataset_xr_da_ecad_index_error(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) with pytest.raises(InvalidIcclimArgumentError): read_dataset(da, EcadIndex.WW) def test_read_dataset_xr_da_ecad_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, EcadIndex.TX90P) xr.testing.assert_equal(ds_res.tasmax, da) assert chunk_it is False def test_read_dataset_xr_da_user_index_success(self): da = xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) ds_res, chunk_it = read_dataset(da, None, "doto") xr.testing.assert_equal(ds_res.doto, da) assert chunk_it is False def test_read_dataset_xr_ds_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds_res, chunk_it = read_dataset(ds) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is False def test_read_dataset_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds_res, chunk_it = read_dataset(self.OUTPUT_NC_FILE) xr.testing.assert_equal(ds_res.pouet, ds.pouet) assert chunk_it is True def test_read_dataset_multi_netcdf_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_netcdf(self.OUTPUT_NC_FILE) ds.rename({"pouet": "patapouet"}).to_netcdf(self.OUTPUT_NC_FILE_2) # WHEN ds_res, chunk_it = read_dataset([self.OUTPUT_NC_FILE, self.OUTPUT_NC_FILE_2]) # THEN xr.testing.assert_equal(ds_res.pouet, ds.pouet) xr.testing.assert_equal(ds_res.patapouet, ds.pouet) assert chunk_it is True def test_read_dataset_zarr_store_success(self): ds = xr.Dataset( { "pouet": xr.DataArray( data=np.full(10, 42).reshape((10, 1, 1)), coords=dict( latitude=[42], longitude=[42], t=pd.date_range("2042-01-01", periods=10, freq="D"), ), dims=["t", "latitude", "longitude"], name="pr", attrs={"units": "kg m-2 d-1"}, ) } ) ds.to_zarr(self.OUTPUT_ZARR_STORE) # WHEN ds_res, chunk_it = read_dataset(self.
167
12
1,208
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_URL
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.
168
12
1,259
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_URL
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.
169
12
1,408
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_DRIVER
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.
170
12
1,462
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_DRIVER
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.
171
12
1,622
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_TABLE
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.
172
12
1,675
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_TABLE
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.
173
12
1,833
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_PARTITIONCOLUMN
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.
174
12
1,896
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_PARTITIONCOLUMN
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.
175
12
2,106
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_LOWERBOUND
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.
176
12
2,164
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_LOWERBOUND
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.
177
12
2,421
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_UPPERBOUND
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.
178
12
2,479
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_UPPERBOUND
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.
179
12
2,736
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_NUMPARTITIONS
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.
180
12
2,791
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_NUMPARTITIONS
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.
181
12
3,068
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
random
JDBCTOJDBC_OUTPUT_URL
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.
182
12
3,120
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_URL
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.
183
12
3,271
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_DRIVER
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.
184
12
3,326
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_DRIVER
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.
185
12
3,488
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_TABLE
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.
186
12
3,542
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_TABLE
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.
187
12
3,702
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.
188
12
3,770
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.
189
12
4,051
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_MODE
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.
190
12
4,104
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_MODE
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.
191
12
4,186
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
OUTPUT_MODE_APPEND
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.
192
12
4,431
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
76
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "for" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.
193
12
4,480
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
random
OUTPUT_MODE_APPEND
true
statement
76
75
false
false
[ "OUTPUT_MODE_IGNORE", "JDBC_URL", "JDBC_TABLE", "OUTPUT_MODE_ERRORIFEXISTS", "FORMAT_JDBC", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "for" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.
194
12
4,526
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
OUTPUT_MODE_IGNORE
true
statement
76
75
false
true
[ "OUTPUT_MODE_APPEND", "JDBC_URL", "JDBC_TABLE", "OUTPUT_MODE_ERRORIFEXISTS", "FORMAT_JDBC", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "for" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.
195
12
4,572
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
OUTPUT_MODE_ERRORIFEXISTS
true
statement
76
75
false
true
[ "OUTPUT_MODE_APPEND", "OUTPUT_MODE_IGNORE", "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "for" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.
196
12
4,678
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_BATCH_SIZE
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.
197
12
4,737
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_BATCH_SIZE
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "OUTPUT_MODE_APPEND", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.
198
12
5,124
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
inproject
get_logger
true
function
4
4
false
true
[ "parse_args", "run", "get_logger", "build", "__str__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.
199
12
5,214
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_URL
true
statement
75
75
false
false
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_URL", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.
200
12
5,284
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_DRIVER
true
statement
75
75
false
false
[ "JDBC_DRIVER", "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBCTOJDBC_INPUT_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.
201
12
5,356
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_TABLE
true
statement
75
75
false
false
[ "JDBC_TABLE", "FORMAT_JDBC", "JDBC_URL", "JDBC_DRIVER", "JDBCTOJDBC_INPUT_TABLE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.
202
12
5,437
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_PARTITIONCOLUMN
true
statement
75
75
false
false
[ "JDBC_PARTITIONCOLUMN", "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.
203
12
5,523
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_LOWERBOUND
true
statement
75
75
false
false
[ "JDBC_LOWERBOUND", "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.
204
12
5,604
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_INPUT_UPPERBOUND
true
statement
75
75
false
false
[ "JDBC_UPPERBOUND", "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.
205
12
5,682
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_NUMPARTITIONS
true
statement
75
75
false
false
[ "JDBC_NUMPARTITIONS", "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.
206
12
5,754
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_URL
true
statement
75
75
false
false
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.
207
12
5,826
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_DRIVER
true
statement
75
75
false
false
[ "JDBC_DRIVER", "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.
208
12
5,900
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_TABLE
true
statement
75
75
false
false
[ "JDBC_TABLE", "JDBC_URL", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.
209
12
5,987
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION
true
statement
75
75
false
false
[ "JDBC_TABLE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBC_URL", "FORMAT_JDBC", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.
210
12
6,073
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_MODE
true
statement
75
75
false
false
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_TABLE", "OUTPUT_MODE_OVERWRITE", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.
211
12
6,150
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBCTOJDBC_OUTPUT_BATCH_SIZE
true
statement
75
75
false
false
[ "JDBC_BATCH_SIZE", "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.
212
12
6,987
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
FORMAT_JDBC
true
statement
75
75
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.
213
12
7,036
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_URL
true
statement
75
75
false
true
[ "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.
214
12
7,098
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_DRIVER
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_NUMPARTITIONS", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.
215
12
7,166
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_TABLE
true
statement
75
75
false
true
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.
216
12
7,232
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_NUMPARTITIONS
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_CREATE_TABLE_OPTIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.
217
12
7,382
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
FORMAT_JDBC
true
statement
75
75
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.
218
12
7,431
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_URL
true
statement
75
75
false
false
[ "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.
219
12
7,493
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_DRIVER
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_NUMPARTITIONS", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.
220
12
7,561
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_TABLE
true
statement
75
75
false
false
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.
221
12
7,627
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_PARTITIONCOLUMN
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.
222
12
7,713
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_LOWERBOUND
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.
223
12
7,789
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_UPPERBOUND
true
statement
75
75
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.
224
12
7,865
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_NUMPARTITIONS
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_CREATE_TABLE_OPTIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.JDBC_UPPERBOUND, input_jdbc_upperbound) \ .option(constants.
225
12
8,005
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
FORMAT_JDBC
true
statement
75
75
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.JDBC_UPPERBOUND, input_jdbc_upperbound) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() # Write input_data.write \ .format(constants.
226
12
8,050
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_URL
true
statement
75
75
false
false
[ "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.JDBC_UPPERBOUND, input_jdbc_upperbound) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() # Write input_data.write \ .format(constants.FORMAT_JDBC) \ .option(constants.
227
12
8,109
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_DRIVER
true
statement
75
75
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_NUMPARTITIONS", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.JDBC_UPPERBOUND, input_jdbc_upperbound) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() # Write input_data.write \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, output_jdbc_url) \ .option(constants.
228
12
8,174
googlecloudplatform__dataproc-templates
4d63cf08165dbee145ce8b26d7aa0b11ff4c5a8f
python/dataproc_templates/jdbc/jdbc_to_jdbc.py
Unknown
JDBC_TABLE
true
statement
75
75
false
false
[ "JDBC_URL", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants __all__ = ['JDBCToJDBCTemplate'] class JDBCToJDBCTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into JDBC """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_URL}', dest=constants.JDBCTOJDBC_INPUT_URL, required=True, help='JDBC input URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_DRIVER}', dest=constants.JDBCTOJDBC_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_TABLE}', dest=constants.JDBCTOJDBC_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}', dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}', dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOJDBC_NUMPARTITIONS}', dest=constants.JDBCTOJDBC_NUMPARTITIONS, required=False, default=10, help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_URL}', dest=constants.JDBCTOJDBC_OUTPUT_URL, required=True, help='JDBC output URL' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}', dest=constants.JDBCTOJDBC_OUTPUT_DRIVER, required=True, help='JDBC output driver name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}', dest=constants.JDBCTOJDBC_OUTPUT_TABLE, required=True, help='JDBC output table name' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}', dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION, required=False, default="", help='This option allows setting of database-specific table and partition options when creating a output table' ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_MODE}', dest=constants.JDBCTOJDBC_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}', dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE, required=False, default=1000, help='JDBC output batch size. Default set to 1000' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS] output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL] output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER] output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE] output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION] output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE] output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE] logger.info( "Starting JDBC to JDBC spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data: DataFrame partition_parameters=str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.") exit (1) elif (partition_parameters == ""): input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() else: input_data=spark.read \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, input_jdbc_url) \ .option(constants.JDBC_DRIVER, input_jdbc_driver) \ .option(constants.JDBC_TABLE, input_jdbc_table) \ .option(constants.JDBC_PARTITIONCOLUMN, input_jdbc_partitioncolumn) \ .option(constants.JDBC_LOWERBOUND, input_jdbc_lowerbound) \ .option(constants.JDBC_UPPERBOUND, input_jdbc_upperbound) \ .option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \ .load() # Write input_data.write \ .format(constants.FORMAT_JDBC) \ .option(constants.JDBC_URL, output_jdbc_url) \ .option(constants.JDBC_DRIVER, output_jdbc_driver) \ .option(constants.
230
13
1,013
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
inproject
parse_args
true
function
4
4
false
true
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.
231
13
2,586
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.
232
13
3,291
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
run
true
function
4
4
false
true
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.
233
13
3,401
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
FORMAT_JDBC
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.
234
13
3,491
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_URL
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.
235
13
3,594
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_DRIVER
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.
236
13
3,712
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_TABLE
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.
237
13
3,838
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_PARTITIONCOLUMN
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.
238
13
3,983
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_LOWERBOUND
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.
239
13
4,127
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_UPPERBOUND
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.
240
13
4,280
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_NUMPARTITIONS
true
statement
86
86
false
true
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_LOWERBOUND", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.
241
13
4,508
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
86
86
false
true
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "CSV_HEADER", "CSV_INFER_SCHEMA", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "CSV_HEADER", "type": "statement" }, { "name": "CSV_INFER_SCHEMA", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.
242
13
4,902
googlecloudplatform__dataproc-templates
bba5da698a8aa144c73d4d2a90e84c6a577ce7f4
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.