idx
int64
0
7.85k
idx_lca
int64
0
223
offset
int64
162
55k
repo
stringclasses
62 values
commit_hash
stringclasses
113 values
target_file
stringclasses
134 values
line_type_lca
stringclasses
7 values
ground_truth
stringlengths
1
46
in_completions
bool
1 class
completion_type
stringclasses
6 values
non_dunder_count_intellij
int64
0
529
non_dunder_count_jedi
int64
0
128
start_with_
bool
2 classes
first_occurrence
bool
2 classes
intellij_completions
listlengths
1
532
jedi_completions
listlengths
3
148
prefix
stringlengths
162
55k
343
14
12,648
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
FORMAT_JDBC
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.
344
14
12,738
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_URL
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.
345
14
12,841
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_DRIVER
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.
346
14
12,959
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_TABLE
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.
347
14
13,085
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_NUMPARTITIONS
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.
348
14
13,287
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
OUTPUT_MODE_APPEND
true
statement
103
103
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.
349
14
13,801
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.
350
14
14,335
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.
351
14
14,445
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
FORMAT_JDBC
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.
352
14
14,535
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_URL
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_TABLE", "JDBC_DRIVER", "JDBC_URL", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.
353
14
14,638
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_DRIVER
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "JDBC_DRIVER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.
354
14
14,756
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_TABLE
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_DRIVER", "JDBC_TABLE", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.
355
14
14,882
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
JDBC_NUMPARTITIONS
true
statement
103
103
false
false
[ "FORMAT_JDBC", "JDBC_URL", "JDBC_TABLE", "JDBC_DRIVER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.
356
14
15,084
googlecloudplatform__dataproc-templates
d62560011b069690d01cf2db563788bf81029623
python/test/jdbc/test_jdbc_to_gcs.py
Unknown
OUTPUT_MODE_APPEND
true
statement
103
103
false
false
[ "JDBC_URL", "JDBC_TABLE", "FORMAT_JDBC", "JDBC_DRIVER", "JDBC_NUMPARTITIONS", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_LOWERBOUND", "JDBC_PARTITIONCOLUMN", "JDBC_UPPERBOUND", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.jdbc.jdbc_to_gcs import JDBCToGCSTemplate import dataproc_templates.util.template_constants as constants class TestJDBCToGCSTemplate: """ Test suite for JDBCToGCSTemplate """ def test_parse_args1(self): """Tests JDBCToGCSTemplate.parse_args()""" jdbc_to_gcs_template = JDBCToGCSTemplate() parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) assert parsed_args["jdbctogcs.input.url"] == "url" assert parsed_args["jdbctogcs.input.driver"] == "driver" assert parsed_args["jdbctogcs.input.table"] == "table1" assert parsed_args["jdbctogcs.input.partitioncolumn"] == "column" assert parsed_args["jdbctogcs.input.lowerbound"] == "1" assert parsed_args["jdbctogcs.input.upperbound"] == "2" assert parsed_args["jdbctogcs.numpartitions"] == "5" assert parsed_args["jdbctogcs.output.location"] == "gs://test" assert parsed_args["jdbctogcs.output.format"] == "csv" assert parsed_args["jdbctogcs.output.mode"] == "append" assert parsed_args["jdbctogcs.output.partitioncolumn"] == "column" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args2(self, mock_spark_session): """Tests JDBCToGCSTemplate write parquet""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=parquet", "--jdbctogcs.output.mode=overwrite" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write.mode().parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args3(self, mock_spark_session): """Tests JDBCToGCSTemplate write avro""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=avro", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write.mode().format().save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args4(self, mock_spark_session): """Tests JDBCToGCSTemplate write csv""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args5(self, mock_spark_session): """Tests JDBCToGCSTemplate write json""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.input.partitioncolumn=column", "--jdbctogcs.input.lowerbound=1", "--jdbctogcs.input.upperbound=2", "--jdbctogcs.numpartitions=5", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=json", "--jdbctogcs.output.mode=ignore" ]) mock_spark_session.read.format().option().option().option().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_PARTITIONCOLUMN, "column") mock_spark_session.read.format().option().option().option().option().option.assert_called_with(constants.JDBC_LOWERBOUND, "1") mock_spark_session.read.format().option().option().option().option().option().option.assert_called_with(constants.JDBC_UPPERBOUND, "2") mock_spark_session.read.format().option().option().option().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "5") mock_spark_session.read.format().option().option().option().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) #mock_spark_session.dataframe.DataFrame.write.mode().json.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args6(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write.mode().option.assert_called_once_with(constants.CSV_HEADER, True) mock_spark_session.dataframe.DataFrame.write.mode().option().csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_pass_args7(self, mock_spark_session): """Tests JDBCToGCSTemplate pass args""" jdbc_to_gcs_template = JDBCToGCSTemplate() mock_parsed_args = jdbc_to_gcs_template.parse_args( ["--jdbctogcs.input.url=url", "--jdbctogcs.input.driver=driver", "--jdbctogcs.input.table=table1", "--jdbctogcs.output.location=gs://test", "--jdbctogcs.output.format=csv", "--jdbctogcs.output.mode=append", "--jdbctogcs.output.partitioncolumn=column" ]) mock_spark_session.read.format().option().option().option().option().load.return_value = mock_spark_session.dataframe.DataFrame jdbc_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_with(constants.FORMAT_JDBC) mock_spark_session.read.format().option.assert_called_with(constants.JDBC_URL, "url") mock_spark_session.read.format().option().option.assert_called_with(constants.JDBC_DRIVER, "driver") mock_spark_session.read.format().option().option().option.assert_called_with(constants.JDBC_TABLE, "table1") mock_spark_session.read.format().option().option().option().option.assert_called_with(constants.JDBC_NUMPARTITIONS, "10") mock_spark_session.read.format().option().option().option().option().load() mock_spark_session.dataframe.DataFrame.write.mode.assert_called_once_with(constants.
357
15
1,021
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
inproject
parse_args
true
function
4
4
false
true
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.
358
15
2,055
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.
359
15
2,559
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
common
run
true
function
4
4
false
true
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.
360
15
2,685
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
FORMAT_MONGO
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "FORMAT_AVRO", "MONGO_COLLECTION", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.
361
15
2,830
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
random
MONGO_DATABASE
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_COLLECTION", "MONGO_DATABASE", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.
362
15
3,012
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_COLLECTION
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.
363
15
3,319
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_IGNORE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.
364
15
3,749
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.
365
15
4,247
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.
366
15
4,373
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
FORMAT_MONGO
true
statement
123
123
false
false
[ "FORMAT_MONGO", "FORMAT_AVRO", "MONGO_DATABASE", "MONGO_COLLECTION", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.
367
15
4,518
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_DATABASE
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_COLLECTION", "MONGO_DATABASE", "FORMAT_AVRO", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.
368
15
4,700
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_COLLECTION
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "FORMAT_AVRO", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.
369
15
5,007
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
OUTPUT_MODE_APPEND
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "FORMAT_AVRO", "OUTPUT_MODE_IGNORE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.
370
15
5,158
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
FORMAT_AVRO
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.
371
15
5,597
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
inproject
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.
372
15
6,094
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.
373
15
6,220
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
FORMAT_MONGO
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "FORMAT_AVRO", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.
374
15
6,365
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_DATABASE
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_COLLECTION", "MONGO_DATABASE", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.
375
15
6,547
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_COLLECTION
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.
376
15
6,854
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
OUTPUT_MODE_IGNORE
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_OVERWRITE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.
377
15
7,005
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
HEADER
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "FORMAT_AVRO", "OUTPUT_MODE_IGNORE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.
378
15
7,446
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.
379
15
7,951
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=json", "--mongo.gcs.output.mode=errorifexists", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.
380
15
8,077
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
FORMAT_MONGO
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_DATABASE", "FORMAT_AVRO", "MONGO_COLLECTION", "HEADER", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=json", "--mongo.gcs.output.mode=errorifexists", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.
381
15
8,222
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_DATABASE
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_COLLECTION", "MONGO_DATABASE", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=json", "--mongo.gcs.output.mode=errorifexists", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.
382
15
8,404
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
MONGO_COLLECTION
true
statement
123
123
false
false
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "HEADER", "FORMAT_AVRO", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=json", "--mongo.gcs.output.mode=errorifexists", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.
383
15
8,711
googlecloudplatform__dataproc-templates
8b291caed55509d56d36f03c1c25762350b6f905
python/test/mongo/test_mongo_to_gcs.py
Unknown
OUTPUT_MODE_ERRORIFEXISTS
true
statement
123
123
false
true
[ "FORMAT_MONGO", "MONGO_DATABASE", "MONGO_COLLECTION", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_IGNORE", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_CSV", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HEADER", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_GCS_INPUT_COLLECTION", "MONGO_GCS_INPUT_DATABASE", "MONGO_GCS_INPUT_URI", "MONGO_GCS_OUTPUT_FORMAT", "MONGO_GCS_OUTPUT_LOCATION", "MONGO_GCS_OUTPUT_MODE", "MONGO_INPUT_URI", "MONGO_URL", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_OVERWRITE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_COLLECTION", "type": "statement" }, { "name": "MONGO_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "MONGO_GCS_INPUT_URI", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "MONGO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "MONGO_INPUT_URI", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from dataproc_templates.mongo.mongo_to_gcs import MongoToGCSTemplate import dataproc_templates.util.template_constants as constants class TestMongoToGCSTemplate: """ Test suite for MongoToGCSTemplate """ def test_parse_args(self): """Tests MongoToGCSTemplate.parse_args()""" mongo_to_gcs_template = MongoToGCSTemplate() parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) assert parsed_args["mongo.gcs.input.uri"] == "mongodb://host:port" assert parsed_args["mongo.gcs.input.database"] == "database" assert parsed_args["mongo.gcs.input.collection"] == "collection" assert parsed_args["mongo.gcs.output.format"] == "parquet" assert parsed_args["mongo.gcs.output.mode"] == "overwrite" assert parsed_args["mongo.gcs.output.location"] == "gs://test" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests MongoToGCSTemplate runs for parquet format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=parquet", "--mongo.gcs.output.mode=overwrite", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .parquet.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests MongoToGCSTemplate runs for avro format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=avro", "--mongo.gcs.output.mode=append", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_APPEND) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .format() \ .save.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests MongoToGCSTemplate runs for csv format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=csv", "--mongo.gcs.output.mode=ignore", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_IGNORE) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.dataframe.DataFrame.write \ .mode() \ .option() \ .csv.assert_called_once_with("gs://test") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests MongoToGCSTemplate runs for json format output""" mongo_to_gcs_template = MongoToGCSTemplate() mock_parsed_args = mongo_to_gcs_template.parse_args( ["--mongo.gcs.input.uri=mongodb://host:port", "--mongo.gcs.input.database=database", "--mongo.gcs.input.collection=collection", "--mongo.gcs.output.format=json", "--mongo.gcs.output.mode=errorifexists", "--mongo.gcs.output.location=gs://test"]) mock_spark_session.read.format().option().option().option().load.return_value \ = mock_spark_session.dataframe.DataFrame mongo_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read \ .format.assert_called_with(constants.FORMAT_MONGO) mock_spark_session.read \ .format() \ .option() \ .option.assert_called_with(constants.MONGO_DATABASE,"database") mock_spark_session.read \ .format() \ .option() \ .option() \ .option.assert_called_with(constants.MONGO_COLLECTION,"collection") mock_spark_session.read \ .format() \ .option() \ .option() \ .option() \ .load.assert_called_with() mock_spark_session.dataframe.DataFrame.write \ .mode.assert_called_once_with(constants.
384
16
990
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
inproject
parse_args
true
function
4
4
false
true
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.
385
16
2,259
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.
386
16
2,834
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
run
true
function
4
4
false
true
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.
387
16
3,223
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
124
124
false
true
[ "OUTPUT_MODE_OVERWRITE", "HEADER", "FORMAT_AVRO", "FORMAT_CSV", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.
388
16
3,797
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
inproject
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.
389
16
4,360
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.
390
16
4,476
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
FORMAT_CSV
true
statement
124
124
false
true
[ "FORMAT_AVRO", "HEADER", "OUTPUT_MODE_OVERWRITE", "INFER_SCHEMA", "FORMAT_CSV", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.
391
16
4,585
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
HEADER
true
statement
124
124
false
true
[ "FORMAT_CSV", "OUTPUT_MODE_OVERWRITE", "FORMAT_AVRO", "HEADER", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.
392
16
4,720
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
INFER_SCHEMA
true
statement
124
124
false
true
[ "HEADER", "FORMAT_CSV", "OUTPUT_MODE_OVERWRITE", "FORMAT_AVRO", "GCS_TO_GCS_INPUT_FORMAT", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INFER_SCHEMA", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.
393
16
5,252
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
124
124
false
false
[ "OUTPUT_MODE_OVERWRITE", "HEADER", "FORMAT_CSV", "FORMAT_AVRO", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.
394
16
5,543
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
HEADER
true
statement
124
124
false
false
[ "FORMAT_CSV", "OUTPUT_MODE_OVERWRITE", "FORMAT_AVRO", "HEADER", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.
395
16
6,020
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.
396
16
6,585
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
common
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.
397
16
6,701
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
FORMAT_AVRO
true
statement
124
124
false
true
[ "FORMAT_AVRO", "FORMAT_CSV", "HEADER", "OUTPUT_MODE_OVERWRITE", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.
398
16
7,131
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
124
124
false
false
[ "FORMAT_AVRO", "OUTPUT_MODE_OVERWRITE", "HEADER", "FORMAT_CSV", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.read.format() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.
399
16
7,422
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
FORMAT_AVRO
true
statement
124
124
false
false
[ "FORMAT_AVRO", "FORMAT_CSV", "HEADER", "OUTPUT_MODE_OVERWRITE", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.read.format() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format.assert_called_once_with(constants.
400
16
7,887
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
parse_args
true
function
4
4
false
false
[ "parse_args", "run", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.read.format() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format() \ .save.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.
401
16
8,453
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
run
true
function
4
4
false
false
[ "run", "parse_args", "build", "get_logger", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__slots__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "build", "type": "function" }, { "name": "get_logger", "type": "function" }, { "name": "parse_args", "type": "function" }, { "name": "run", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.read.format() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format() \ .save.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=json", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=json", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.json.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.
402
16
8,836
googlecloudplatform__dataproc-templates
49e82f63f0e49578ce6451902da57a095bc02b5d
python/test/gcs/test_gcs_to_gcs.py
Unknown
OUTPUT_MODE_OVERWRITE
true
statement
124
124
false
false
[ "OUTPUT_MODE_OVERWRITE", "HEADER", "FORMAT_AVRO", "FORMAT_CSV", "INFER_SCHEMA", "BQ_GCS_INPUT_TABLE", "BQ_GCS_OUTPUT_FORMAT", "BQ_GCS_OUTPUT_LOCATION", "BQ_GCS_OUTPUT_MODE", "COMPRESSION_BZIP2", "COMPRESSION_DEFLATE", "COMPRESSION_GZIP", "COMPRESSION_LZ4", "COMPRESSION_NONE", "FORMAT_AVRO_EXTD", "FORMAT_BIGQUERY", "FORMAT_HBASE", "FORMAT_JDBC", "FORMAT_JSON", "FORMAT_MONGO", "FORMAT_PRQT", "FORMAT_TXT", "GCS_BQ_INPUT_FORMAT", "GCS_BQ_INPUT_LOCATION", "GCS_BQ_LD_TEMP_BUCKET_NAME", "GCS_BQ_OUTPUT_DATASET", "GCS_BQ_OUTPUT_MODE", "GCS_BQ_OUTPUT_TABLE", "GCS_BQ_TEMP_BUCKET", "GCS_BT_HBASE_CATALOG_JSON", "GCS_BT_INPUT_FORMAT", "GCS_BT_INPUT_LOCATION", "GCS_JDBC_BATCH_SIZE", "GCS_JDBC_INPUT_FORMAT", "GCS_JDBC_INPUT_LOCATION", "GCS_JDBC_OUTPUT_DRIVER", "GCS_JDBC_OUTPUT_MODE", "GCS_JDBC_OUTPUT_TABLE", "GCS_JDBC_OUTPUT_URL", "GCS_MONGO_BATCH_SIZE", "GCS_MONGO_INPUT_FORMAT", "GCS_MONGO_INPUT_LOCATION", "GCS_MONGO_OUTPUT_COLLECTION", "GCS_MONGO_OUTPUT_DATABASE", "GCS_MONGO_OUTPUT_MODE", "GCS_MONGO_OUTPUT_URI", "GCS_TO_GCS_INPUT_FORMAT", "GCS_TO_GCS_INPUT_LOCATION", "GCS_TO_GCS_OUTPUT_FORMAT", "GCS_TO_GCS_OUTPUT_LOCATION", "GCS_TO_GCS_OUTPUT_MODE", "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "GCS_TO_GCS_SQL_QUERY", "GCS_TO_GCS_TEMP_VIEW_NAME", "HBASE_GCS_CATALOG_JSON", "HBASE_GCS_OUTPUT_FORMAT", "HBASE_GCS_OUTPUT_LOCATION", "HBASE_GCS_OUTPUT_MODE", "HIVE_BQ_INPUT_DATABASE", "HIVE_BQ_INPUT_TABLE", "HIVE_BQ_LD_TEMP_BUCKET_NAME", "HIVE_BQ_OUTPUT_DATASET", "HIVE_BQ_OUTPUT_MODE", "HIVE_BQ_OUTPUT_TABLE", "HIVE_GCS_INPUT_DATABASE", "HIVE_GCS_INPUT_TABLE", "HIVE_GCS_OUTPUT_FORMAT", "HIVE_GCS_OUTPUT_LOCATION", "HIVE_GCS_OUTPUT_MODE", "INPUT_COMPRESSION", "INPUT_DELIMITER", "JDBC_BATCH_SIZE", "JDBC_CREATE_TABLE_OPTIONS", "JDBC_DRIVER", "JDBC_LOWERBOUND", "JDBC_NUMPARTITIONS", "JDBC_PARTITIONCOLUMN", "JDBC_TABLE", "JDBC_UPPERBOUND", "JDBC_URL", "JDBCTOGCS_INPUT_DRIVER", "JDBCTOGCS_INPUT_LOWERBOUND", "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "JDBCTOGCS_INPUT_TABLE", "JDBCTOGCS_INPUT_UPPERBOUND", "JDBCTOGCS_INPUT_URL", "JDBCTOGCS_NUMPARTITIONS", "JDBCTOGCS_OUTPUT_FORMAT", "JDBCTOGCS_OUTPUT_LOCATION", "JDBCTOGCS_OUTPUT_MODE", "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_DRIVER", "JDBCTOJDBC_INPUT_LOWERBOUND", "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "JDBCTOJDBC_INPUT_TABLE", "JDBCTOJDBC_INPUT_UPPERBOUND", "JDBCTOJDBC_INPUT_URL", "JDBCTOJDBC_NUMPARTITIONS", "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "JDBCTOJDBC_OUTPUT_DRIVER", "JDBCTOJDBC_OUTPUT_MODE", "JDBCTOJDBC_OUTPUT_TABLE", "JDBCTOJDBC_OUTPUT_URL", "MONGO_BATCH_SIZE", "MONGO_COLLECTION", "MONGO_DATABASE", "MONGO_DEFAULT_BATCH_SIZE", "MONGO_URL", "OUTPUT_MODE_APPEND", "OUTPUT_MODE_ERRORIFEXISTS", "OUTPUT_MODE_IGNORE", "PROJECT_ID_PROP", "TABLE", "TEMP_GCS_BUCKET", "TEXT_BQ_INPUT_INFERSCHEMA", "TEXT_BQ_INPUT_LOCATION", "TEXT_BQ_LD_TEMP_BUCKET_NAME", "TEXT_BQ_OUTPUT_DATASET", "TEXT_BQ_OUTPUT_MODE", "TEXT_BQ_OUTPUT_TABLE", "TEXT_BQ_TEMP_BUCKET", "TEXT_INPUT_COMPRESSION", "TEXT_INPUT_DELIMITER" ]
[ { "name": "BQ_GCS_INPUT_TABLE", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "BQ_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "COMPRESSION_BZIP2", "type": "statement" }, { "name": "COMPRESSION_DEFLATE", "type": "statement" }, { "name": "COMPRESSION_GZIP", "type": "statement" }, { "name": "COMPRESSION_LZ4", "type": "statement" }, { "name": "COMPRESSION_NONE", "type": "statement" }, { "name": "FORMAT_AVRO", "type": "statement" }, { "name": "FORMAT_AVRO_EXTD", "type": "statement" }, { "name": "FORMAT_BIGQUERY", "type": "statement" }, { "name": "FORMAT_CSV", "type": "statement" }, { "name": "FORMAT_HBASE", "type": "statement" }, { "name": "FORMAT_JDBC", "type": "statement" }, { "name": "FORMAT_JSON", "type": "statement" }, { "name": "FORMAT_MONGO", "type": "statement" }, { "name": "FORMAT_PRQT", "type": "statement" }, { "name": "FORMAT_TXT", "type": "statement" }, { "name": "GCS_BQ_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "GCS_BT_HBASE_CATALOG_JSON", "type": "statement" }, { "name": "GCS_BT_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_BT_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_BATCH_SIZE", "type": "statement" }, { "name": "GCS_JDBC_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_JDBC_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "GCS_JDBC_OUTPUT_URL", "type": "statement" }, { "name": "GCS_MONGO_BATCH_SIZE", "type": "statement" }, { "name": "GCS_MONGO_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_MONGO_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_COLLECTION", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_DATABASE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_MONGO_OUTPUT_URI", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_INPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "GCS_TO_GCS_OUTPUT_PARTITION_COLUMN", "type": "statement" }, { "name": "GCS_TO_GCS_SQL_QUERY", "type": "statement" }, { "name": "GCS_TO_GCS_TEMP_VIEW_NAME", "type": "statement" }, { "name": "HBASE_GCS_CATALOG_JSON", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HBASE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "HEADER", "type": "statement" }, { "name": "HIVE_BQ_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_BQ_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "HIVE_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_DATABASE", "type": "statement" }, { "name": "HIVE_GCS_INPUT_TABLE", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "HIVE_GCS_OUTPUT_MODE", "type": "statement" }, { "name": "INFER_SCHEMA", "type": "statement" }, { "name": "INPUT_COMPRESSION", "type": "statement" }, { "name": "INPUT_DELIMITER", "type": "statement" }, { "name": "JDBC_BATCH_SIZE", "type": "statement" }, { "name": "JDBC_CREATE_TABLE_OPTIONS", "type": "statement" }, { "name": "JDBC_DRIVER", "type": "statement" }, { "name": "JDBC_LOWERBOUND", "type": "statement" }, { "name": "JDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBC_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBC_TABLE", "type": "statement" }, { "name": "JDBC_UPPERBOUND", "type": "statement" }, { "name": "JDBC_URL", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOGCS_INPUT_URL", "type": "statement" }, { "name": "JDBCTOGCS_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_FORMAT", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_LOCATION", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOGCS_OUTPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_LOWERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_PARTITIONCOLUMN", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_UPPERBOUND", "type": "statement" }, { "name": "JDBCTOJDBC_INPUT_URL", "type": "statement" }, { "name": "JDBCTOJDBC_NUMPARTITIONS", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_BATCH_SIZE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_DRIVER", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_MODE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_TABLE", "type": "statement" }, { "name": "JDBCTOJDBC_OUTPUT_URL", "type": "statement" }, { "name": "MONGO_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_COLLECTION", "type": "statement" }, { "name": "MONGO_DATABASE", "type": "statement" }, { "name": "MONGO_DEFAULT_BATCH_SIZE", "type": "statement" }, { "name": "MONGO_URL", "type": "statement" }, { "name": "OUTPUT_MODE_APPEND", "type": "statement" }, { "name": "OUTPUT_MODE_ERRORIFEXISTS", "type": "statement" }, { "name": "OUTPUT_MODE_IGNORE", "type": "statement" }, { "name": "OUTPUT_MODE_OVERWRITE", "type": "statement" }, { "name": "PROJECT_ID_PROP", "type": "statement" }, { "name": "TABLE", "type": "statement" }, { "name": "TEMP_GCS_BUCKET", "type": "statement" }, { "name": "TEXT_BQ_INPUT_INFERSCHEMA", "type": "statement" }, { "name": "TEXT_BQ_INPUT_LOCATION", "type": "statement" }, { "name": "TEXT_BQ_LD_TEMP_BUCKET_NAME", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_DATASET", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_MODE", "type": "statement" }, { "name": "TEXT_BQ_OUTPUT_TABLE", "type": "statement" }, { "name": "TEXT_BQ_TEMP_BUCKET", "type": "statement" }, { "name": "TEXT_INPUT_COMPRESSION", "type": "statement" }, { "name": "TEXT_INPUT_DELIMITER", "type": "statement" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
""" * Copyright 2022 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. """ import mock import pyspark from google.cloud import storage from dataproc_templates.gcs.gcs_to_gcs import GCSToGCSTemplate import dataproc_templates.util.template_constants as constants class TestGCSToGCSTemplate: """ Test suite for GCSToBigQueryTemplate """ def test_parse_args(self): gcs_to_gcs_template = GCSToGCSTemplate() parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) assert parsed_args["gcs.to.gcs.input.location"] == "gs://input" assert parsed_args["gcs.to.gcs.input.format"] == "csv" assert parsed_args["gcs.to.gcs.temp.view.name"] == "temp" assert parsed_args["gcs.to.gcs.sql.query"] == "select * from temp" assert parsed_args["gcs.to.gcs.output.format"] == "csv" assert parsed_args["gcs.to.gcs.output.mode"] == "overwrite" assert parsed_args["gcs.to.gcs.output.partition.column"] == "column" assert parsed_args["gcs.to.gcs.output.location"] == "gs://output" @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_parquet(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=parquet", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=parquet", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.parquet.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.parquet.assert_called_once_with("gs://input") mock_spark_session.read.parquet().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .parquet.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_csv(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=csv", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=csv", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_CSV) mock_spark_session.read.format() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.read.format() \ .option() \ .option.assert_called_once_with(constants.INFER_SCHEMA, True) mock_spark_session.read.format() \ .option() \ .option() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .option() \ .option() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option.assert_called_once_with(constants.HEADER, True) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .option() \ .csv.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_avro(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=avro", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=avro", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.csv.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.read.format() \ .load.assert_called_once_with("gs://input") mock_spark_session.read.format() \ .load() \ .createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.OUTPUT_MODE_OVERWRITE) mock_spark_session.sql().write \ .mode() \ .partitionBy.assert_called_once_with("column") mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format.assert_called_once_with(constants.FORMAT_AVRO) mock_spark_session.sql().write \ .mode() \ .partitionBy() \ .format() \ .save.assert_called_once_with("gs://output") @mock.patch.object(pyspark.sql, 'SparkSession') def test_run_json(self, mock_spark_session): """Tests GCSToBigqueryTemplate runs with parquet format""" gcs_to_gcs_template = GCSToGCSTemplate() mock_parsed_args = gcs_to_gcs_template.parse_args( ["--gcs.to.gcs.input.location=gs://input", "--gcs.to.gcs.input.format=json", "--gcs.to.gcs.temp.view.name=temp", "--gcs.to.gcs.sql.query=select * from temp", "--gcs.to.gcs.output.format=json", "--gcs.to.gcs.output.mode=overwrite", "--gcs.to.gcs.output.partition.column=column", "--gcs.to.gcs.output.location=gs://output"]) mock_spark_session.read.json.return_value = mock_spark_session.dataframe.DataFrame gcs_to_gcs_template.run(mock_spark_session, mock_parsed_args) mock_spark_session.read.json.assert_called_once_with("gs://input") mock_spark_session.read.json().createOrReplaceTempView.assert_called_once_with("temp") mock_spark_session.sql.assert_called_once_with("select * from temp") mock_spark_session.sql().write \ .mode.assert_called_once_with(constants.
403
17
917
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
commited
__init__
true
function
8
8
true
true
[ "ctx", "indent", "uri", "verbose", "soma_options", "exists", "name", "object_type", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "soma_options", "type": "statement" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().
407
17
1,422
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
verbose
true
statement
17
17
false
true
[ "verbose", "attr_name", "col_dim_name", "row_dim_name", "uri", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.
408
17
1,452
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
get_start_stamp
true
function
6
12
false
true
[ "get_start_stamp", "format_elapsed", "find_csr_chunk_size", "get_sort_and_permutation", "Optional", "_to_tiledb_supported_array_type" ]
[ { "name": "ad", "type": "module" }, { "name": "find_csr_chunk_size", "type": "function" }, { "name": "format_elapsed", "type": "function" }, { "name": "get_sort_and_permutation", "type": "function" }, { "name": "get_start_stamp", "type": "function" }, { "name": "numpy", "type": "module" }, { "name": "Optional", "type": "class" }, { "name": "pd", "type": "module" }, { "name": "scipy", "type": "module" }, { "name": "tiledb", "type": "module" }, { "name": "time", "type": "module" }, { "name": "_to_tiledb_supported_array_type", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.
409
17
1,496
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
indent
true
statement
17
17
false
true
[ "uri", "indent", "attr_name", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.
410
17
1,524
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
uri
true
statement
17
17
false
true
[ "indent", "uri", "attr_name", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.
411
17
1,548
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
exists
true
function
17
17
false
true
[ "verbose", "attr_name", "col_dim_name", "row_dim_name", "uri", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.
412
17
1,578
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
verbose
true
statement
17
17
false
false
[ "verbose", "attr_name", "col_dim_name", "row_dim_name", "uri", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.
413
17
1,617
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
indent
true
statement
17
17
false
false
[ "uri", "attr_name", "indent", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.
414
17
1,654
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
uri
true
statement
17
17
false
false
[ "indent", "uri", "attr_name", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.
415
17
1,692
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
infile
create_empty_array
true
function
17
17
false
true
[ "attr_name", "col_dim_name", "row_dim_name", "ingest_data_rows_chunked", "ingest_data_whole", "__init__", "create_empty_array", "from_matrix", "ingest_data", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.
416
17
1,752
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
infile
ingest_data
true
function
17
17
false
true
[ "row_dim_name", "attr_name", "col_dim_name", "uri", "indent", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.
417
17
1,810
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
verbose
true
statement
17
17
false
false
[ "verbose", "attr_name", "col_dim_name", "row_dim_name", "uri", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.
418
17
1,842
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
format_elapsed
true
function
6
12
false
true
[ "format_elapsed", "get_start_stamp", "find_csr_chunk_size", "get_sort_and_permutation", "Optional", "_to_tiledb_supported_array_type" ]
[ { "name": "ad", "type": "module" }, { "name": "find_csr_chunk_size", "type": "function" }, { "name": "format_elapsed", "type": "function" }, { "name": "get_sort_and_permutation", "type": "function" }, { "name": "get_start_stamp", "type": "function" }, { "name": "numpy", "type": "module" }, { "name": "Optional", "type": "class" }, { "name": "pd", "type": "module" }, { "name": "scipy", "type": "module" }, { "name": "tiledb", "type": "module" }, { "name": "time", "type": "module" }, { "name": "_to_tiledb_supported_array_type", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.
419
17
1,868
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
indent
true
statement
17
17
false
false
[ "uri", "indent", "attr_name", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.
420
17
1,896
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
uri
true
statement
17
17
false
false
[ "indent", "uri", "attr_name", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.
421
17
2,176
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
soma_options
true
statement
17
17
false
true
[ "uri", "col_dim_name", "row_dim_name", "attr_name", "from_matrix", "__init__", "create_empty_array", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.
422
17
2,189
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
string_dim_zstd_level
true
statement
8
8
false
true
[ "X_capacity", "X_cell_order", "X_tile_order", "goal_chunk_nnz", "write_X_chunked_if_csr", "obs_extent", "string_dim_zstd_level", "var_extent", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "goal_chunk_nnz", "type": "statement" }, { "name": "obs_extent", "type": "statement" }, { "name": "string_dim_zstd_level", "type": "statement" }, { "name": "var_extent", "type": "statement" }, { "name": "write_X_chunked_if_csr", "type": "statement" }, { "name": "X_capacity", "type": "statement" }, { "name": "X_cell_order", "type": "statement" }, { "name": "X_tile_order", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__bool__", "type": "instance" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__ge__", "type": "instance" }, { "name": "__getattribute__", "type": "function" }, { "name": "__gt__", "type": "instance" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__le__", "type": "instance" }, { "name": "__lt__", "type": "instance" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasshook__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.
423
17
2,273
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
row_dim_name
true
statement
17
17
false
true
[ "attr_name", "col_dim_name", "row_dim_name", "name", "ctx", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.
424
17
2,387
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
random
col_dim_name
true
statement
17
17
false
true
[ "attr_name", "row_dim_name", "col_dim_name", "name", "ctx", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.
425
17
2,501
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
ctx
true
statement
17
17
false
true
[ "ctx", "col_dim_name", "row_dim_name", "soma_options", "attr_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.
426
17
2,547
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
attr_name
true
statement
17
17
false
true
[ "attr_name", "uri", "indent", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.
427
17
2,618
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
ctx
true
statement
17
17
false
false
[ "ctx", "attr_name", "col_dim_name", "row_dim_name", "soma_options", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.
428
17
2,908
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
soma_options
true
statement
17
17
false
false
[ "col_dim_name", "row_dim_name", "uri", "attr_name", "ctx", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.
429
17
2,921
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
X_capacity
true
statement
8
8
false
true
[ "X_capacity", "X_cell_order", "X_tile_order", "string_dim_zstd_level", "goal_chunk_nnz", "obs_extent", "var_extent", "write_X_chunked_if_csr", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "goal_chunk_nnz", "type": "statement" }, { "name": "obs_extent", "type": "statement" }, { "name": "string_dim_zstd_level", "type": "statement" }, { "name": "var_extent", "type": "statement" }, { "name": "write_X_chunked_if_csr", "type": "statement" }, { "name": "X_capacity", "type": "statement" }, { "name": "X_cell_order", "type": "statement" }, { "name": "X_tile_order", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__bool__", "type": "instance" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__ge__", "type": "instance" }, { "name": "__getattribute__", "type": "function" }, { "name": "__gt__", "type": "instance" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__le__", "type": "instance" }, { "name": "__lt__", "type": "instance" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasshook__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.
430
17
2,961
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
soma_options
true
statement
17
17
false
false
[ "col_dim_name", "row_dim_name", "uri", "attr_name", "ctx", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.
431
17
2,974
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
X_cell_order
true
statement
8
8
false
true
[ "X_tile_order", "X_cell_order", "X_capacity", "string_dim_zstd_level", "goal_chunk_nnz", "obs_extent", "var_extent", "write_X_chunked_if_csr", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "goal_chunk_nnz", "type": "statement" }, { "name": "obs_extent", "type": "statement" }, { "name": "string_dim_zstd_level", "type": "statement" }, { "name": "var_extent", "type": "statement" }, { "name": "write_X_chunked_if_csr", "type": "statement" }, { "name": "X_capacity", "type": "statement" }, { "name": "X_cell_order", "type": "statement" }, { "name": "X_tile_order", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__bool__", "type": "instance" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__ge__", "type": "instance" }, { "name": "__getattribute__", "type": "function" }, { "name": "__gt__", "type": "instance" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__le__", "type": "instance" }, { "name": "__lt__", "type": "instance" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasshook__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.
432
17
3,016
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
soma_options
true
statement
17
17
false
false
[ "col_dim_name", "row_dim_name", "uri", "attr_name", "ctx", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.
433
17
3,029
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
X_tile_order
true
statement
8
8
false
true
[ "X_cell_order", "X_tile_order", "X_capacity", "string_dim_zstd_level", "goal_chunk_nnz", "obs_extent", "var_extent", "write_X_chunked_if_csr", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "goal_chunk_nnz", "type": "statement" }, { "name": "obs_extent", "type": "statement" }, { "name": "string_dim_zstd_level", "type": "statement" }, { "name": "var_extent", "type": "statement" }, { "name": "write_X_chunked_if_csr", "type": "statement" }, { "name": "X_capacity", "type": "statement" }, { "name": "X_cell_order", "type": "statement" }, { "name": "X_tile_order", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__bool__", "type": "instance" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__ge__", "type": "instance" }, { "name": "__getattribute__", "type": "function" }, { "name": "__gt__", "type": "instance" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__le__", "type": "instance" }, { "name": "__lt__", "type": "instance" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasshook__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.
434
17
3,064
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
ctx
true
statement
17
17
false
false
[ "ctx", "soma_options", "col_dim_name", "row_dim_name", "attr_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.
435
17
3,112
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
common
uri
true
statement
17
17
false
false
[ "attr_name", "uri", "indent", "col_dim_name", "row_dim_name", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.
436
17
3,131
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
common
ctx
true
statement
17
17
false
false
[ "ctx", "uri", "col_dim_name", "row_dim_name", "soma_options", "__init__", "attr_name", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.
437
17
3,387
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
random
soma_options
true
statement
17
17
false
false
[ "to_csr_matrix", "from_matrix", "col_dim_name", "row_dim_name", "attr_name", "__init__", "create_empty_array", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "ctx", "exists", "indent", "name", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.
438
17
3,400
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
random
write_X_chunked_if_csr
true
statement
8
8
false
true
[ "X_capacity", "X_cell_order", "X_tile_order", "goal_chunk_nnz", "string_dim_zstd_level", "obs_extent", "var_extent", "write_X_chunked_if_csr", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "goal_chunk_nnz", "type": "statement" }, { "name": "obs_extent", "type": "statement" }, { "name": "string_dim_zstd_level", "type": "statement" }, { "name": "var_extent", "type": "statement" }, { "name": "write_X_chunked_if_csr", "type": "statement" }, { "name": "X_capacity", "type": "statement" }, { "name": "X_cell_order", "type": "statement" }, { "name": "X_tile_order", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__bool__", "type": "instance" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__ge__", "type": "instance" }, { "name": "__getattribute__", "type": "function" }, { "name": "__gt__", "type": "instance" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__le__", "type": "instance" }, { "name": "__lt__", "type": "instance" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasshook__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.
439
17
3,441
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
infile
ingest_data_rows_chunked
true
function
17
17
false
true
[ "attr_name", "ingest_data_whole", "col_dim_name", "row_dim_name", "create_empty_array", "__init__", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.
440
17
3,527
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
infile
ingest_data_whole
true
function
17
17
false
true
[ "ingest_data_rows_chunked", "attr_name", "col_dim_name", "row_dim_name", "create_empty_array", "__init__", "from_matrix", "ingest_data", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "uri", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.
441
17
4,242
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
uri
true
statement
17
17
false
false
[ "attr_name", "uri", "col_dim_name", "row_dim_name", "indent", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.ingest_data_whole(matrix, row_names, col_names) # ---------------------------------------------------------------- def ingest_data_whole(self, matrix, row_names, col_names) -> None: """ Convert ndarray/(csr|csc)matrix to coo_matrix and ingest into TileDB. :param matrix: Matrix-like object coercible to a scipy coo_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] mat_coo = scipy.sparse.coo_matrix(matrix) d0 = row_names[mat_coo.row] d1 = col_names[mat_coo.col] with tiledb.open(self.
442
17
4,266
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
ctx
true
statement
17
17
false
false
[ "ctx", "col_dim_name", "row_dim_name", "attr_name", "uri", "__init__", "create_empty_array", "from_matrix", "ingest_data", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "exists", "indent", "name", "object_type", "soma_options", "verbose", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.ingest_data_whole(matrix, row_names, col_names) # ---------------------------------------------------------------- def ingest_data_whole(self, matrix, row_names, col_names) -> None: """ Convert ndarray/(csr|csc)matrix to coo_matrix and ingest into TileDB. :param matrix: Matrix-like object coercible to a scipy coo_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] mat_coo = scipy.sparse.coo_matrix(matrix) d0 = row_names[mat_coo.row] d1 = col_names[mat_coo.col] with tiledb.open(self.uri, mode="w", ctx=self.
443
17
6,382
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
inproject
get_sort_and_permutation
true
function
6
12
false
true
[ "get_start_stamp", "format_elapsed", "find_csr_chunk_size", "Optional", "get_sort_and_permutation", "_to_tiledb_supported_array_type" ]
[ { "name": "ad", "type": "module" }, { "name": "find_csr_chunk_size", "type": "function" }, { "name": "format_elapsed", "type": "function" }, { "name": "get_sort_and_permutation", "type": "function" }, { "name": "get_start_stamp", "type": "function" }, { "name": "numpy", "type": "module" }, { "name": "Optional", "type": "class" }, { "name": "pd", "type": "module" }, { "name": "scipy", "type": "module" }, { "name": "tiledb", "type": "module" }, { "name": "time", "type": "module" }, { "name": "_to_tiledb_supported_array_type", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.ingest_data_whole(matrix, row_names, col_names) # ---------------------------------------------------------------- def ingest_data_whole(self, matrix, row_names, col_names) -> None: """ Convert ndarray/(csr|csc)matrix to coo_matrix and ingest into TileDB. :param matrix: Matrix-like object coercible to a scipy coo_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] mat_coo = scipy.sparse.coo_matrix(matrix) d0 = row_names[mat_coo.row] d1 = col_names[mat_coo.col] with tiledb.open(self.uri, mode="w", ctx=self.ctx) as A: A[d0, d1] = mat_coo.data # ---------------------------------------------------------------- # Example: suppose this 4x3 is to be written in two chunks of two rows each # but written in sorted order. # # Original Sorted Permutation # data row names # # X Y Z # C 0 1 2 A 1 # A 4 0 5 B 2 # B 7 0 0 C 0 # D 0 8 9 D 3 # # First chunk: # * Row indices 0,1 map to permutation indices 1,2 # * i,i2 are 0,2 # * chunk_coo is original matrix rows 1,2 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [0,1] # * sorted_row_names: ['A', 'B'] # # Second chunk: # * Row indices 2,3 map to permutation indices 0,3 # * i,i2 are 2,4 # * chunk_coo is original matrix rows 0,3 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [2,3] # * sorted_row_names: ['C', 'D'] # # See README-csr-ingest.md for important information of using this ingestor. # ---------------------------------------------------------------- def ingest_data_rows_chunked(self, matrix, row_names, col_names) -> None: """ Convert csr_matrix to coo_matrix chunkwise and ingest into TileDB. :param uri: TileDB URI of the array to be written. :param matrix: csr_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] # Sort the row names so we can write chunks indexed by sorted string keys. This will lead # to efficient TileDB fragments in the sparse array indexed by these string keys. # # Key note: only the _obs labels_ are being sorted, and along with them come permutation # indices for accessing the CSR matrix via cursor-indirection -- e.g. csr[28] is accessed as # with csr[permuation[28]] -- the CSR matrix itself isn't sorted in bulk. sorted_row_names, permutation = util.
444
17
6,605
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
inproject
get_start_stamp
true
function
6
12
false
false
[ "get_start_stamp", "format_elapsed", "find_csr_chunk_size", "get_sort_and_permutation", "Optional", "_to_tiledb_supported_array_type" ]
[ { "name": "ad", "type": "module" }, { "name": "find_csr_chunk_size", "type": "function" }, { "name": "format_elapsed", "type": "function" }, { "name": "get_sort_and_permutation", "type": "function" }, { "name": "get_start_stamp", "type": "function" }, { "name": "numpy", "type": "module" }, { "name": "Optional", "type": "class" }, { "name": "pd", "type": "module" }, { "name": "scipy", "type": "module" }, { "name": "tiledb", "type": "module" }, { "name": "time", "type": "module" }, { "name": "_to_tiledb_supported_array_type", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.ingest_data_whole(matrix, row_names, col_names) # ---------------------------------------------------------------- def ingest_data_whole(self, matrix, row_names, col_names) -> None: """ Convert ndarray/(csr|csc)matrix to coo_matrix and ingest into TileDB. :param matrix: Matrix-like object coercible to a scipy coo_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] mat_coo = scipy.sparse.coo_matrix(matrix) d0 = row_names[mat_coo.row] d1 = col_names[mat_coo.col] with tiledb.open(self.uri, mode="w", ctx=self.ctx) as A: A[d0, d1] = mat_coo.data # ---------------------------------------------------------------- # Example: suppose this 4x3 is to be written in two chunks of two rows each # but written in sorted order. # # Original Sorted Permutation # data row names # # X Y Z # C 0 1 2 A 1 # A 4 0 5 B 2 # B 7 0 0 C 0 # D 0 8 9 D 3 # # First chunk: # * Row indices 0,1 map to permutation indices 1,2 # * i,i2 are 0,2 # * chunk_coo is original matrix rows 1,2 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [0,1] # * sorted_row_names: ['A', 'B'] # # Second chunk: # * Row indices 2,3 map to permutation indices 0,3 # * i,i2 are 2,4 # * chunk_coo is original matrix rows 0,3 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [2,3] # * sorted_row_names: ['C', 'D'] # # See README-csr-ingest.md for important information of using this ingestor. # ---------------------------------------------------------------- def ingest_data_rows_chunked(self, matrix, row_names, col_names) -> None: """ Convert csr_matrix to coo_matrix chunkwise and ingest into TileDB. :param uri: TileDB URI of the array to be written. :param matrix: csr_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] # Sort the row names so we can write chunks indexed by sorted string keys. This will lead # to efficient TileDB fragments in the sparse array indexed by these string keys. # # Key note: only the _obs labels_ are being sorted, and along with them come permutation # indices for accessing the CSR matrix via cursor-indirection -- e.g. csr[28] is accessed as # with csr[permuation[28]] -- the CSR matrix itself isn't sorted in bulk. sorted_row_names, permutation = util.get_sort_and_permutation(list(row_names)) # Using numpy we can index this with a list of indices, which a plain Python list doesn't support. sorted_row_names = np.asarray(sorted_row_names) s = util.
445
17
6,639
single-cell-data__tiledb-soma
0a9b47f0d37d4e309d85897423bcea947086b39a
apis/python/src/tiledbsc/assay_matrix.py
Unknown
verbose
true
statement
17
17
false
false
[ "verbose", "row_dim_name", "attr_name", "col_dim_name", "ingest_data", "__init__", "create_empty_array", "from_matrix", "ingest_data_rows_chunked", "ingest_data_whole", "to_csr_matrix", "ctx", "exists", "indent", "name", "object_type", "soma_options", "uri", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "attr_name", "type": "statement" }, { "name": "col_dim_name", "type": "statement" }, { "name": "create_empty_array", "type": "function" }, { "name": "ctx", "type": "statement" }, { "name": "exists", "type": "function" }, { "name": "from_matrix", "type": "function" }, { "name": "indent", "type": "statement" }, { "name": "ingest_data", "type": "function" }, { "name": "ingest_data_rows_chunked", "type": "function" }, { "name": "ingest_data_whole", "type": "function" }, { "name": "name", "type": "statement" }, { "name": "object_type", "type": "function" }, { "name": "row_dim_name", "type": "statement" }, { "name": "soma_options", "type": "statement" }, { "name": "to_csr_matrix", "type": "function" }, { "name": "uri", "type": "statement" }, { "name": "verbose", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import tiledb from .soma_options import SOMAOptions from .tiledb_array import TileDBArray from .tiledb_group import TileDBGroup from .tiledb_object import TileDBObject import tiledbsc.util as util import scipy import numpy as np from typing import Optional class AssayMatrix(TileDBArray): """ Wraps a TileDB sparse array with two string dimensions. Used for X, obsp members, and varp members. """ row_dim_name: str # obs_id for X, obs_id_i for obsp; var_id_i for varp col_dim_name: str # var_id for X, obs_id_j for obsp; var_id_j for varp attr_name: str # ---------------------------------------------------------------- def __init__( self, uri: str, name: str, row_dim_name: str, col_dim_name: str, parent: Optional[TileDBGroup] = None, ): """ See the TileDBObject constructor. """ super().__init__(uri=uri, name=name, parent=parent) self.row_dim_name = row_dim_name self.col_dim_name = col_dim_name self.attr_name = 'value' # ---------------------------------------------------------------- def from_matrix(self, matrix, row_names, col_names) -> None: """ Imports a matrix -- nominally scipy.sparse.csr_matrix or numpy.ndarray -- into a TileDB array which is used for X, obsp members, and varp members. """ if self.verbose: s = util.get_start_stamp() print(f"{self.indent}START WRITING {self.uri}") if self.exists(): if self.verbose: print(f"{self.indent}Re-using existing array {self.uri}") else: self.create_empty_array(matrix_dtype=matrix.dtype) self.ingest_data(matrix, row_names, col_names) if self.verbose: print(util.format_elapsed(s, f"{self.indent}FINISH WRITING {self.uri}")) # ---------------------------------------------------------------- def create_empty_array(self, matrix_dtype: np.dtype) -> None: """ Create a TileDB 2D sparse array with string dimensions and a single attribute. """ level = self.soma_options.string_dim_zstd_level dom = tiledb.Domain( tiledb.Dim(name=self.row_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.RleFilter()]), tiledb.Dim(name=self.col_dim_name, domain=(None, None), dtype="ascii", filters=[tiledb.ZstdFilter(level=level)]), ctx=self.ctx ) att = tiledb.Attr(self.attr_name, dtype=matrix_dtype, filters=[tiledb.ZstdFilter()], ctx=self.ctx) sch = tiledb.ArraySchema( domain=dom, attrs=(att,), sparse=True, allows_duplicates=True, offsets_filters=[tiledb.DoubleDeltaFilter(), tiledb.BitWidthReductionFilter(), tiledb.ZstdFilter()], capacity=self.soma_options.X_capacity, cell_order=self.soma_options.X_cell_order, tile_order=self.soma_options.X_tile_order, ctx=self.ctx ) tiledb.Array.create(self.uri, sch, ctx=self.ctx) # ---------------------------------------------------------------- def ingest_data(self, matrix, row_names, col_names) -> None: # TODO: add chunked support for CSC if isinstance(matrix, scipy.sparse._csr.csr_matrix) and self.soma_options.write_X_chunked_if_csr: self.ingest_data_rows_chunked(matrix, row_names, col_names) else: self.ingest_data_whole(matrix, row_names, col_names) # ---------------------------------------------------------------- def ingest_data_whole(self, matrix, row_names, col_names) -> None: """ Convert ndarray/(csr|csc)matrix to coo_matrix and ingest into TileDB. :param matrix: Matrix-like object coercible to a scipy coo_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] mat_coo = scipy.sparse.coo_matrix(matrix) d0 = row_names[mat_coo.row] d1 = col_names[mat_coo.col] with tiledb.open(self.uri, mode="w", ctx=self.ctx) as A: A[d0, d1] = mat_coo.data # ---------------------------------------------------------------- # Example: suppose this 4x3 is to be written in two chunks of two rows each # but written in sorted order. # # Original Sorted Permutation # data row names # # X Y Z # C 0 1 2 A 1 # A 4 0 5 B 2 # B 7 0 0 C 0 # D 0 8 9 D 3 # # First chunk: # * Row indices 0,1 map to permutation indices 1,2 # * i,i2 are 0,2 # * chunk_coo is original matrix rows 1,2 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [0,1] # * sorted_row_names: ['A', 'B'] # # Second chunk: # * Row indices 2,3 map to permutation indices 0,3 # * i,i2 are 2,4 # * chunk_coo is original matrix rows 0,3 # * chunk_coo.row is [0,1] # * chunk_coo.row + i is [2,3] # * sorted_row_names: ['C', 'D'] # # See README-csr-ingest.md for important information of using this ingestor. # ---------------------------------------------------------------- def ingest_data_rows_chunked(self, matrix, row_names, col_names) -> None: """ Convert csr_matrix to coo_matrix chunkwise and ingest into TileDB. :param uri: TileDB URI of the array to be written. :param matrix: csr_matrix. :param row_names: List of row names. :param col_names: List of column names. """ assert len(row_names) == matrix.shape[0] assert len(col_names) == matrix.shape[1] # Sort the row names so we can write chunks indexed by sorted string keys. This will lead # to efficient TileDB fragments in the sparse array indexed by these string keys. # # Key note: only the _obs labels_ are being sorted, and along with them come permutation # indices for accessing the CSR matrix via cursor-indirection -- e.g. csr[28] is accessed as # with csr[permuation[28]] -- the CSR matrix itself isn't sorted in bulk. sorted_row_names, permutation = util.get_sort_and_permutation(list(row_names)) # Using numpy we can index this with a list of indices, which a plain Python list doesn't support. sorted_row_names = np.asarray(sorted_row_names) s = util.get_start_stamp() if self.