|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: kpi-priority-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# kpi-priority-model |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7414 |
|
- Accuracy: 0.7288 |
|
- F1: 0.7266 |
|
- Classification Report: precision recall f1-score support |
|
|
|
Low 0.68 0.83 0.75 94 |
|
Medium 0.66 0.52 0.58 111 |
|
High 0.69 0.73 0.71 202 |
|
Critical 0.81 0.78 0.80 253 |
|
|
|
accuracy 0.73 660 |
|
macro avg 0.71 0.72 0.71 660 |
|
weighted avg 0.73 0.73 0.73 660 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Classification Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 2.3852 | 1.0 | 165 | 0.8176 | 0.6833 | 0.6838 | precision recall f1-score support |
|
|
|
Low 0.65 0.85 0.74 94 |
|
Medium 0.55 0.55 0.55 111 |
|
High 0.62 0.78 0.69 202 |
|
Critical 0.88 0.60 0.72 253 |
|
|
|
accuracy 0.68 660 |
|
macro avg 0.68 0.70 0.67 660 |
|
weighted avg 0.71 0.68 0.68 660 |
|
| |
|
| 1.3946 | 2.0 | 330 | 0.7414 | 0.7288 | 0.7266 | precision recall f1-score support |
|
|
|
Low 0.68 0.83 0.75 94 |
|
Medium 0.66 0.52 0.58 111 |
|
High 0.69 0.73 0.71 202 |
|
Critical 0.81 0.78 0.80 253 |
|
|
|
accuracy 0.73 660 |
|
macro avg 0.71 0.72 0.71 660 |
|
weighted avg 0.73 0.73 0.73 660 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0.dev0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|