|
--- |
|
pretty_name: MultiCaRe Articles |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-classification |
|
- text-retrieval |
|
language: |
|
- en |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# MultiCaRe: Open-Source Clinical Case Dataset |
|
|
|
MultiCaRe aggregates open-access, de-identified clinical case reports from PubMed Central’s OA corpus, pairing article-level metadata and abstracts with case narratives and figure images/captions. The normalization makes it easy to map from images → cases → articles. |
|
|
|
- Source and process: parse PMC OA case reports; extract metadata/abstracts; download/process figures; align captions; build a hierarchical taxonomy for image labels. |
|
- Scale: 85k+ OA articles, 160k+ images (v2.0). |
|
- Tasks: article-level retrieval/classification, summarization; joins to cases/images for multimodal tasks. |
|
- Citation: MDPI DATA paper — <https://www.mdpi.com/2306-5729/10/8/123>; Zenodo — <https://zenodo.org/records/13936721>. |
|
|
|
This repository: per-article dataset |
|
Per-article dataset with bibliographic metadata and abstracts (one file: articles.parquet). |
|
|
|
Schema |
|
|
|
- article_id: PMCID (primary key) |
|
- title, journal, year |
|
- doi, pmid, pmcid |
|
- mesh_terms, major_mesh_terms, keywords |
|
- link, license, case_amount |
|
- abstract: article abstract |
|
|
|
Quick start |
|
|
|
```python |
|
from datasets import load_dataset |
|
art = load_dataset("openmed-community/multicare-articles", split="train") |
|
row = art[0] |
|
print(row["title"]) |
|
print(row["abstract"][:600]) |
|
``` |
|
|
|
Join examples |
|
|
|
```python |
|
from datasets import load_dataset |
|
art = load_dataset("openmed-community/multicare-articles", split="train") |
|
cas = load_dataset("openmed-community/multicare-cases", split="train") |
|
|
|
aid = cas[0]["article_id"] |
|
article = art.filter(lambda e: e["article_id"] == aid)[0] |
|
print(article["title"]) # matching article |
|
``` |
|
|
|
Notes |
|
|
|
- Use article-level splits to avoid leakage when combining with images/cases. |
|
|